L'uranium 235 est le seul nucléide naturel qui soit fissile, ou fissible, autrement dit il peut, par capture de neutron, se scinder en deux noyaux fils avec émission de neutrons (fission nucléaire). Par suite, l'uranium enrichi en cet isotope est aujourd'hui utilisé comme combustible nucléaire dans les réacteurs nucléaires (voir cycle du combustible nucléaire) ou encore dans les armes nucléaires, que ce soient les bombes atomiques, ou comme amorce dans les bombes H.
Au contraire de l'uranium 235, l'uranium 238, lorsqu'il capture un neutron, ne fissionne pas (sauf neutrons rapides). Il devient de l'uranium 239 instable qui, par désintégration β − , va se transformer en neptunium 239. Or ce dernier est lui aussi radioactif β − , et va alors donner naissance à un nouveau noyau, le plutonium 239. Ce radioisotope est fissile, comme l'uranium 235. L'uranium 238 est un isotope fertile, qui peut produire des produits fissiles.
L'uranium 234 n'est, lui, ni fissile, ni fertile, et provient de la décomposition radioactive de l'uranium 238 comme indiqué dans la précédente section.
La fission d'un atome d'uranium 235 libère de l'ordre de 200 MeV (la valeur exacte dépendant des produits de fission). De même, la fission d'un atome de plutonium 239 libère de l'ordre de 210 MeV. Ces valeurs sont à comparer avec celles de la combustion de carburants fossiles, qui libèrent de l'ordre de 5 eV par molécule de CO2 produit: l'ordre de grandeur des énergies libérées par les combustibles nucléaires est un million de fois plus importante que celle des énergies fossiles chimiques.
Le potentiel d'énergie de l'uranium n'est exploité que très partiellement dans les réacteurs actuels, mais la différence reste nette : 1 kg d'uranium naturel permet la production d'environ 500 000 MJ dans un réacteur conventionnel, à comparer avec les 39 MJ obtenus par 1 kg de gaz naturel, 45 MJ pour 1 kg de pétrole, et 20 à 30 MJ pour le charbon.
L'uranium a 17 isotopes, tous radioactifs, dont 3 seulement sont présents à l'état naturel : 238U ; 235U et 234U. On trouve dans une tonne d'uranium naturel pur 7,1 kg d'uranium 235 et 54 g d'uranium 234, le reste étant de l'uranium 238.
Les isotopes 238 et 235 ont beaucoup d'applications, militaires notamment, mais aussi civiles, comme, par exemple, la datation de l'âge de la Terre à partir de la datation radiométrique à l'uranium-plomb ou à l'uranium-thorium.
Quelles que soient les teneurs en uranium des milieux, les proportions entre les deux principaux isotopes formant l'uranium naturel sont pratiquement les mêmes : 238U : 99,28 % ; 235U : 0,71 %.
Le troisième isotope 234U appartient à la chaîne de désintégration de l'238U. L'isotope 234 est toujours présent sur Terre, à l'état de traces, bien qu'il ait une demi-vie de seulement 245 500 ans ; car il est constamment généré par désintégration radioactive de l'isotope 238 (après 3 étapes : une transition α donnant 234Th, puis deux transitions β- donnant 234Pa, puis 234U). Quand il est à l'équilibre séculaire, la proportion entre 238U et 234U est égale au rapport des demi-vies, soit 0,0056 %.
Cependant, les rapports isotopique peuvent varier légèrement d'un gisement à l'autre, entre 0,005 % et 0,006 % pour l'234U, du fait d'une légère différence de comportement dans le changement U6+↔ U4+. Le rapport isotopique 234U/238U peut être perturbé par différents processus environnementaux, tandis que le rapport 235U/238U reste assez largement constant.
L'industrie nucléaire produit deux autres isotopes artificiels de l'uranium, relativement stables à échelle humaine :
L'uranium pur est radioactif, son activité massique dépendant à la fois de son enrichissement, et de la fraîcheur de sa purification chimique.
Si l'on considère les isotopes purs de l'uranium, 238U a une activité massique de 12,4 Bq/mg, 235U de 80 Bq/mg, et 234U de 230 Bq/µg, soit 230 000 Bq/mg — quatre ordres de grandeur au-dessus des précédents.
De symbole U, l'uranium est le dernier élément naturel du tableau périodique de Mendeleïev. Chaque atome d'uranium possède 92 protons et entre 125 et 150 neutrons.
À l'état pur, l'uranium solide est un métal radioactif gris à blanc (voire argenté), qui rappelle la couleur du nickel. Il est dur et très dense. De plus, l'uranium est l'atome le plus lourd (qui contient le plus de nucléons) présent naturellement sur la Terre.
En raison de son affinité pour l'oxygène, l'uranium s'enflamme spontanément dans l'air à température élevée, voire à température ambiante lorsqu'il se trouve sous forme de microparticules. Il est pyrophorique.
Ainsi dans la nature, l'élément uranium se retrouve toujours en combinaison avec d’autres éléments, tels l'oxygène, l'azote, le soufre, le carbone ; en oxydes, nitrates, sulfates ou carbonates. On le trouve, par exemple, en combinaison avec l'oxygène dans l'uranite et la pechblende, deux des principaux minerais d'uranium, constitués d'oxyde uraneux (UO2).
Enfin, les ions uranyle (
Comme la plupart des métaux, l'uranium a une chimie organo-métallique et de nombreux complexes organo-métalliques tel l'uranocène sont connus.