Bobine Tesla - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

La résonance électrique

Ce qui suit doit être imaginé dans la bobine secondaire du transformateur de Tesla (ou dans l'Extra Coil d'un Magnifier).

Les oscillations de haute fréquence impliquées dans le transformateur de Tesla sont toujours de nature électrique et surviennent à l'intérieur des conducteurs (presque toujours en cuivre). La nature du conducteur est telle que chaque longueur donnée du fil de bobinage a une résonance électrique propre. Sa fréquence est donnée, approximativement, en divisant la vitesse de la lumière par la longueur du conducteur et est dépendante de deux propriétés intrinsèques que sont son inductance et sa capacitance. Théoriquement, lorsqu'un fil de bobinage résonne à sa fréquence naturelle, deux pics et trois nœuds de voltage se produisent sur la longueur du conducteur comme dans une onde sinusoïdale parfaite. De même trois pics et deux nœuds de courant sont aussi présents, mais avec un déphasage de 90 degrés. Lorsqu'un fil de cuivre isolé est enroulé en spires jointives, son inductance est modifiée par les champs magnétiques qui règnent autour du fil et interagissent entre eux. La conséquence est un ralentissement de la propagation de l'énergie électrique le long de l'enroulement de fil conducteur et une modification de la fréquence naturelle de résonance qui diffère selon que le câble est droit ou bobiné. Un gain d'inductance accompagne le passage d'un fil tendu linéaire à une forme enroulée plus courte compacte et ramassée.

Si nous induisons très rapidement une quantité d'énergie électrique dans un bobinage de spires jointives, placé horizontalement dans un espace idéal (sans risque d'interférences), il va résonner à sa fréquence naturelle de résonance (ressemblance approximative d'un coup bref donné sur une cloche). Des nœuds et des pics de voltage vont apparaître le long du fil. Il va tendre à osciller à sa résonance naturelle en demi longueur d'onde, et chaque extrémité du bobinage sera le siège d'un pic de voltage (V= Vmax) alors qu'un point nodal (V = 0) existera exactement en son milieu.

Si toutefois, la base du bobinage est mise à la terre, elle sera le siège forcé d'un point nodal et le bobinage oscillera en quart d'onde. Ces conséquences seront majorées si l'énergie est pulsée dans le bobinage à sa fréquence exacte de résonance. L'effet est appelé coefficient de surtension par résonance et le bobinage est un résonateur hélicoïdal. Une onde stationnaire apparaît sur le résonateur classique en quart d'onde qui possède un pic de courant à sa base (I = Imax) (ou point de mise à la terre) et un nœud de courant au sommet du bobinage (I = 0). De même, il existe un point nodal de voltage à la base (mise à la terre) du bobinage et un pic de voltage à son sommet.

Fonctionnement

Photographie d'arcs électriques provoqués par une bobine de Tesla.

Nikola Tesla a cherché à obtenir du transformateur à résonance une double élévation de tension en bénéficiant d'une part du rapport de transformation lié à l'inégalité du nombre de spires au primaire et au secondaire, et d'autre part du coefficient de surtension qui caractérise un circuit réglé à résonance.

Une fois mis sous tension, le système d'alimentation charge le condensateur. Lorsque la différence de potentiel aux bornes de celui-ci est suffisante, un arc électrique traverse l'éclateur et le condensateur se décharge dans la maille contenant la bobine primaire. C'est une décharge oscillante amortie intense et à haute fréquence: on obtient ainsi dans la bobine primaire un courant alternatif à haute fréquence et haute intensité.

Comme tout solénoïde parcouru par un courant, selon les lois de l'induction magnétique, la bobine primaire produit un champ électromagnétique dans le milieu qui l'entoure. Ce champ est lui aussi intense et varie à haute fréquence. L'importante variation de flux à travers la bobine secondaire va induire aux bornes de celle-ci une différence de potentiel proportionnelle au rapport des nombres de spires des bobines secondaire et primaire (voir le fonctionnement du transformateur monophasé).

L'étape la plus importante du réglage de l'appareil consiste à obtenir la résonance entre la fréquence du circuit primaire et celle du circuit secondaire. Ce réglage, obtenu en augmentant ou diminuant la longueur de la spirale du primaire, est délicat car les champs électromagnétiques générés par les deux bobines sont perceptibles à distance (par exemple bobiner les câbles d'alimentation peut avoir une influence sur le comportement du circuit).

Une fois la résonance atteinte, la tension induite aux bornes de la bobine secondaire est maximale (plusieurs milliers de volts voire plusieurs millions pour les grands modèles). Comme ces tensions sont supérieures à la rigidité diélectrique de l'air, des arcs électriques vont jaillir de l'électrode terminale dans toutes les directions.

En dehors de son intérêt théorique et pédagogique, cette invention ne connaît, aujourd'hui, qu'une application pratique : les effets spéciaux dans le monde du spectacle.

Page générée en 0.122 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise