Cuboctaèdre - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Aire et volume

L'aire A et le volume V d'un cuboctaèdre de côté a sont donnés par

A=(6+2\sqrt{3})a^2
V=\begin{matrix}{5\over3}\end{matrix}\sqrt{2}a^3

Coordonnées cartésiennes

Les coordonnées cartésiennes des sommets d'un cuboctaèdre (de longueur d'arête √2) centré à l'origine sont

(±1,±1,0)
(±1,0,±1)
(0,±1,±1)



Solides géométriques
Les polyèdres
Les solides de Platon
Tétraèdre régulier - Cube - Octaèdre régulier - Icosaèdre régulier - Dodécaèdre régulier
Les solides d'Archimède
Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre
Les solides de Kepler-Poinsot
Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre
Les solides de Catalan
Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre
Les solides de Johnson
Les solides de révolution
Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution
Page générée en 0.108 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise