L’effet Coandă est le résultat de l’attraction d’un jet de fluide par une paroi convexe voisine. Le fluide en suit la surface et subit une déviation avant de s'en détacher avec une trajectoire différente de celle qu'il avait en amont.
Un exemple bien connu de l'effet Coanda est celui consistant à maintenir une balle de ping pong au-dessous d'un flux d'air continu propulsé hors d'un tube vertical. Le fluide (l'air) rencontre la balle et a tendance à la ramener sous le flux d'air. Dans ce genre d'expérience, le fluide propulsé vers le haut est dévié de sa trajectoire vers le bas en contournant la balle qui est liftée car elle peut tourner (effet Magnus). La même expérience peut être réalisée sans effet Magnus en sustentant un tube à essais qui ne peut tourner et dont le fond arrondi est contourné par un jet dirigé vers le haut et dévié vers le bas.
Ce phénomène a été appliqué pour la première fois par l'aérodynamicien Henri Coandă : dans ces applications un gaz est émis par une fente mince dont une paroi est prolongée par une série de facettes planes de longueur croissante qui divergent progressivement de l’axe de la fente : le jet se réattache à la paroi après chaque discontinuité, il est ainsi progressivement dévié, en association avec une diminution de la pression à la paroi.
Selon A. Metral, inventeur de l’expression « Effet Coandă » en 1948 : « L’effet Coandă, c’est les facettes » : mais on l’observe aussi dans de nombreux dispositifs dépourvus de facettes.
On a constaté depuis très longtemps que le fluide suit la surface d’un corps convexe voisin et subit une déviation avant de s'en détacher avec une trajectoire différente de celle qu'il avait en amont.
Le phénomène a été signalé à l’attention de la communauté scientifique en 1800 ou en 1806 par le physicien britannique Thomas Young dans les termes suivants :
« La pression latérale qui attire la flamme d’une bougie vers le flux d’air d’un tube de soufflage (de verrier) est peut-être exactement la même que la pression qui aide la déviation d’un courant d’air près d’un obstacle. Marquons l’impact produit par un mince filet d’air à la surface de l’eau. Mettons un corps convexe en contact avec le bord du filet, et la place de l’impact montrera aussitôt que le courant est dévié vers le corps; et si le corps est libre de se mouvoir dans toutes les directions, il sera attiré vers le courant. »
En quelques lignes Young a décrit des expériences qui permettent de produire le phénomène de déviation, de le reproduire et de le mesurer et en a énoncé une condition nécessaire : l’existence d’une pression latérale qui attire.
Henri Bouasse, professeur de physique à l’Université de Toulouse et compilateur de vieux papiers a repris en 1930 les expériences dont le principe avait été esquissé par Young, rappelées dans. Bouasse précise que si un obstacle arrondi dévie vers lui le courant gazeux, le courant gazeux attire le corps arrondi, avec une force égale à la variation de la quantité de mouvement produite par la déviation du jet, en vertu du théorème d'Euler qui est l’application à un fluide en mouvement de la mécanique de Newton. Il explique aussi que le théorème de Bernoulli ne s'applique à aucun des phénomènes faisant l'objet de ses expériences : le jet crée en son voisinage un vide relatif dans un espace confiné où la vitesse est quasi nulle et la pression plus petite que dans le jet, donc l'équation de Bernoulli ne s'y applique pas.
L’effet Coandă est un phénomène de mécanique des fluides dont l’existence signalée depuis plus de deux siècles a été longtemps négligée, et sur lequel est venu se greffer un phénomène de société : un large public, encore amplifié par le web, a pris l’habitude d’appeler ”effet Coandă” sans les discerner des phénomènes manifestement distincts, mais très faciles à produire dans un environnement familier : cuisine, salon, jardin, en faisant couler de l’eau ou en soufflant dans un tuyau, qui ont pour effet de dévier le jet produit.