Le mathématicien Pierre-Simon de Laplace exprimait le déterminisme en affirmant qu'un génie connaissant exactement la position et le mouvement de tous les objets, même infinitésimaux, de l'univers, avait accès à la connaissance du passé comme du futur de l'univers. Il notait que cette certitude nous était inaccessible et que seul un résultat probable pouvait être proposé. Cette position n'est pas contredite par la théorie du chaos. Ce qu'affirme la théorie du chaos, c'est qu'une erreur très faible sur un paramètre peut avoir une influence importante sur la situation résultante à une date ultérieure.
Henri Poincaré travailla plus tard sur des phénomènes chaotiques, en particulier en réfléchissant à la stabilité du système solaire et au problème des trois corps. C'est Poincaré qui, le premier, donna une définition claire au terme « chaos », en utilisant l'exemple célèbre des sphères : si on place une sphère réfléchissante et que l'on envoie dessus un faisceau lumineux, la direction que prend le faisceau réfléchi dépend largement de la position d'origine. Avec deux sphères, la variation d'un dixième de degré dans l'angle de la source peut amener une divergence de 180° entre les deux faisceaux. Mais ses travaux n’eurent pas d’applications immédiates, faute de calculateurs électroniques avec lesquels effectuer plusieurs millions ou milliards d’itérations.
Les deux mathématiciens, l'un et l'autre au fait de la sensibilité extrême sur le long terme de petites variations initiales, en tiraient des conclusions opposées. Pour l’un, toute prédiction à moyen terme était de ce fait inexorablement vouée à l’échec. Pour l’autre, au contraire, tout n’était que question de moyens de calculs et lorsqu’on en aurait de suffisamment puissants, il serait possible de savoir exactement sur quelle petite cause agir pour éviter le grand effet.
Edward Lorenz, lui, travaillait sur des problèmes similaires : des prévisions météorologiques grâce à des systèmes informatiques. D’après les lois déterministes - également dites prévisionnistes - créées par Galilée et développées par Isaac Newton selon lequel les conditions initiales permettraient de déterminer l’état futur d’un système grâce à la mise en place d’une nouvelle technique mathématique, le calcul différentiel alors en vigueur, toute action X aurait des conséquences Y prévisibles grâce à des formules mathématiques, pourvu que les fonctions en cause fussent continûment dérivables (il n’était pas question par exemple de prévoir le mouvement d’un chat par ce moyen). Lorenz a incorporé, en 1963, le fait que des variations infimes entre deux situations initiales pouvaient conduire à des situations finales sans rapport entre elles.
Il affirma ainsi qu’il n’était pas envisageable de prévoir correctement des modifications climatiques à très long terme (par exemple un an), parce qu’une incertitude de 1 sur 106 lors de la saisie des données de la situation initiale pouvait conduire à une prévision totalement erronée. Or :