La bicouche enveloppe les protéines intrinsèques. Par exemple : on solubilise les lipides des globules rouges, on récupère les lipides de la membrane, on les met en suspension, on peut ainsi calculer la surface de la membrane plasmique de cet ensemble de cellules. Cela démontre l’organisation de ces lipides en deux couches. Organisation asymétrique : les glycolysations ont toujours lieu sur la face extracellulaire. Le cytosquelette : vers le cytoplasme. Les ponts disulfures sur les protéines, à part quelques exceptions, sont toujours à l’extérieur. Cette membrane est en perpétuel mouvement : les constituants de la membrane bougent. Les constituants se déplacent plus ou moins librement : propriétés de fluidité de la bicouche. Fluidité conditionnée par trois facteurs : la température (accélère les mouvements), la quantité de cholestérol (diminue la fluidité) et la nature des phospholipides. Les acides gras insaturés facilitent la fluidité, les acides gras saturés assurent la rigidité de la membrane. Trois types de mouvements : la diffusion latérale (un lipide peut changer de place avec son voisin), la rotation (sur place), le flip flop (changement de feuillet avec basculement, favorisé par des flipases avec consommation d'énergie sous forme d'ATP). Les protéines ne peuvent pas faire ce flip flop mais elles sont aussi capables de bouger dans cette membrane par rotation, diffusion latérale. Le capping (formation d’une petite coiffe), on marque la surface membranaire avec des anticorps fluorescents, les protéines sont marquées de façon diffuse, on observe rapidement des mouvements de ces protéines et des agrégats à certains endroits formant des coiffes à un pôle de la cellule. Au bout d’un certain temps la fluorescence disparaît et se concentre à l’intérieur du cytoplasme. Ce phénomène nécessite et consomme de l’énergie sous forme d'ATP. Ce phénomène peut être bloqué cinétiquement par le froid, ou artificiellement par des poisons métaboliques au niveau des mitochondries.
Le fait que les protéines au niveau de la membrane soient accrochées aux protéines d’autres cellules va limiter les déplacements. Tous ces phénomènes régulent et limitent la diffusion des protéines de la membrane.
Les protéines trans-membranaires qui sont liées par un GPI peuvent être clivées par des enzymes appelées protéases. Ces protéases effectuent des coupures qui peuvent avoir lieu dans le milieu extracellulaire ou dicytosolique (grâce aux protéines cospases). Cela a été découvert lors de l’apoptose (mort programmée de la cellule. C’est ce qui fait que nous n’avons pas des mains en forme de palmes). Pour les cultures des cellules eucaryotes : Respecter les températures.
Sur les membranes plasmiques des cellules, on a des lieux d’échange entre les deux milieux. On dit souvent que les cellules épithéliales sont polarisées : deux domaines particuliers : le pôle apical et le pôle basolatéral : distinction au niveau de la composition en protéines, etc.. Le pôle apical constitue une zone d’interactions entre les protéines membranaires et le cytosquelette, il y a notamment des structures appelées des microvillosités : extensions cytoplasmiques (de diamètre : 0,1 µm). Au sein de ces microvillosités, on a des microfilaments d’actine (un des trois composants du cytosquelette) associés à des protéines : échanges avec le milieu extracellulaire. Ex : les cellules épithéliales du système intestinal ont à leur surface des microvillosités permettant l'absorption des aliments. Zone apicale : lumière de l’intestin. La face basolatérale : face sur laquelle les cellules sont tournées vers le tissu conjonctif. Cette face sert au transfert vers les vaisseaux sanguins des aliments absorbés. On a des replis membranaires servant dans les échanges hydro-minéraux (cellules rénales, glandes salivaires, ..). On a aussi dans certaines cellules des cils (système respiratoire) : extensions cytoplasmiques : microtubules et protéines associées. Au niveau des bronches, c’est les battements de ces cils qui permettent l’évacuation des microbes sous forme de mucus.
Il existe trois types de rôle :
Ces membranes servent à la communication intercellulaire via des signaux chimiques. Deux types de signaux chimiques sont produits. Première catégorie de signaux : ils sont captés et décodés par des récepteurs spécialisés dans les membranes. Ce sont de signaux hydrosolubles (peptidiques ou neurotransmetteurs). Le deuxième catégorie : signaux qui vont pénétrer dans la membrane plasmique : soluble dans la membrane plasmique lipide : liposolubles. Donc les messages sont de nature chimique soit par l’intermédiaire de récepteurs ou traversant la membrane.
Cette membrane plasmique sert à l’adhérence des cellules entre elles et dans le milieu (matrice extracellulaire) : jonctions intercellulaires, forme des domaines spécialisés d’adhérence. Ces domaines sont étroitement liés au cytosquelette.
Troisième grand rôle : transport de molécules au niveau de la membrane. Plusieurs types de transports existent : ceux sans mouvements particuliers : ces transports se déroulent à l’échelle moléculaire : trois caractéristiques majeures, le matériel transporté passe directement du milieu extra cellulaire au milieu intracellulaire ou inversement. Ce matériel transporté n’est jamais enfermé pendant son transport. Enfin, il n'y a jamais d’interventions du cytosquelette. Néanmoins, certains de ces transports peuvent nécessiter de l’énergie.
Transports avec mouvements : phénomènes d’endo ou d’exocytose. Ils impliquent une membrane en mouvement et impliquent le système endomembranaire : les molécules qui vont être transportées vont être pendant une partie de leur transport véhiculées par des vésicules ou des vacuoles. Cette membrane d’enveloppe peut provenir de la membrane plasmique (phagocytose) ou du compartiment du système membranaire (exocytose). Dans le cas de l’exocytose, le matériel qui va être exporté provient du cytosol : les molécules rentrent dans le système endomembranaire. Pour l’endocytose le matériel vient du milieu extracellulaire, traverse la membrane au niveau de structures appelées endosomes ou liposomes puis gagne le cytoplasme. La traversée du système endomembranaire fait intervenir des perméases. Ces mécanismes de transports nécessitent de l’énergie et l’intervention du cytosquelette : cortical.
En permanence la cellule contrôle ces échanges à travers la membrane. Ce contrôle va conduire à la différence de concentration de plusieurs petites molécules Ces transports nécessitent ou non de l’énergie et présence ou non d’une perméase (protéine ou complexe de plusieurs protéines membranaires directement responsables du transport). S'il y consommation d’énergie, on parle de transports actif, sinon passif. Certaines perméases possèdent une activité enzymatique qui va être utilisée pour fournir l’énergie nécessaire au transport. Certaines mitochondries, peroxysomes etc. possèdent aussi des perméases.