Une unité doit, pour être acceptée par tous les Hommes, être :
Uniformité, exactitude et stabilité sont liées et exigent une définition scientifique précise (cf. variance d'Allan).
La rotation de la Terre ralentit inexorablement : on sait partiellement en faire la correction ; mais cela est loin de la précision des horloges atomiques. Idem de la durée de révolution de la Terre autour du soleil.
La conclusion a été une évolution prudente du Système International.
Une horloge même atomique est un instrument fabriqué par l'homme. Aussi elle peut être très exacte, mais sur de faibles intervalles de temps, car elle peut dériver à cause de paramètres mal contrôlés comme la température ou la pression. Elle peut aussi être légèrement inexacte, mais très stable dans son inexactitude.
Dans un pays, chaque laboratoire disposant d'horloge(s) atomique(s) réalise un Temps atomique TA(k). Généralement les indications sur la marche des horloges (variance d'Allan) d'un même pays sont centralisées dans un organisme de métrologie qui établit un TA(pays). En France c'est le LNE-SYRTE à l'Observatoire de Paris qui est chargé d'établir le Temps Atomique français TA(F).
Ces temps sont à nouveau regroupés, selon le meilleur algorithme possible (ALGOS d'abord, puis d'autres ensuite), pour faire le TA International, , mais qui sert aux métrologues pour repérer les dérives de leurs horloges et repondérer itérativement leurs moyennes.
A l'heure actuelle, le temps USNO est celui qui a le moins d'écart au cours du temps avec cette moyenne qu'est le TAI, dont la fiabilité est assurée par la redondance. En gros la marche pondérée de 340 horloges réparties dans 56 laboratoires dans le monde donnent le TAI avec une précision meilleure que 10^(-15) sur 40 jours, MAIS c'est un temps différé connu APRÈS calculs du BIPM.
Le temps terrestre TT est le TAI +32.184s : il est réalisé sur commande par le BIPM ; Il représente un lissage du TAI sur une période plus longue, avec des étalons primaires surveillés sur un an au moins. Il est donc plus stable que le TAI, mais évidemment il est TRES différé.Il sert pour certaines mesures décennales comme la période des pulsars.Il sert aussi pour les datations des éclipses anciennes.
Il faut savoir que, même avec la précision actuelle, le lieu et l'instant exacts d'une éclipse de Soleil dans 100 ou 1000 ans ne peuvent pas se prévoir avec une précision meilleure que quelques secondes. Les circonstances ou la manifestation de ce phénomène à la surface de la Terre sont liés à la rotation terrestre et on ne peut pas prévoir son comportement si loin en avance. Inversement l'archéologie des éclipses anciennes permet de recaler certains paramètres en particulier d'établir l'écart entre TU, lié à la rotation terrestre, et TT, parfaitement régulier par définition. À fortiori les échelles de temps géologique du Néogène(-25 Myr) viennent d'être publiées seulement en 2004 (Gradstein & al, 2004), grâce aux travaux sur les intégrateur symplectiques de Laskar (échelle La2004).
Le BIPM diffuse, pour les applications, la base du temps légal, appelé temps UTC (temps universel coordonné), mais qui est calé sur le temps UT pour des raisons pratiques : à une date précise, annoncée à l'avance, on le décale par une seconde intercalaire (si on ne le faisait pas, au bout d'un certain temps, on se lèverait à minuit et on déjeunerait à 5h du matin !). Depuis le 31 décembre 2005, UTC := TAI + 33s.
Néanmoins, ce décalage, même édicté longtemps à l'avance peut créer des bugs, en particulier dans le domaine informatique ou dans les applications directement liées au temps. C'est pour cela que, par exemple, le temps propre du système GPS ne suit pas les secondes intercalaires. Le temps su système Glonass, qui les suit, a subi des bugs de recalage. On parle donc de n'effectuer cette opération que d'heure en heure, c’est-à-dire que la prochaine heure intercalaire serait repoussée de quelques millénaires : autant dire que ce que l'on mesurera c'est le ralentissement terrestre !
Le temps du GPS n'est pas un temps au sens légal, bien que cela soit un excellent temps puisque construit sur le temps TA (USNO). En effet, bien qu'il soit corrigé de tous les effets relativistes, il reste à le corriger correctement des variations d'indice de la troposhère, ce qui est mal connu. Le projet Galileo qui émettra sur deux fréquences amoindrira un peu cette difficulté, mais qui existera toujours. D'autre part, les transferts de temps ne peuvent se faire à mieux que 100, voire 10ps. D'où la nécessité d'améliorer l'électronique de base, mais à un niveau de 10ps, c'est très difficile. La plupart des composants comme les connecteurs ne sont pas prévus pour cela.
En définitive, le temps UTC est basé sur le temps TAI, recalé pour l'instant sur UT par des secondes intercalaires : il est d'exactitude inférieure à 50 ns, et de précision < 10^(-15).Il est bien sûr ramené à l'altitude zéro du géoïde et prend en compte la rotation terrestre (effets relativistes). [De même, il existe un temps terrestre géocentrique et un temps terrestre barycentrique (tenant compte de la lune) et un temps héliocentrique. Il existe évidemment un temps galactique].
Il est probable qu'en 2011, vu les progrès réalisés sur les horloges optiques à ions piégés (précision attendue 10^(-17)), le S.I. (Système international) optera pour un changement de l'unité de temps, en continuité avec la définition actuelle.