PSR J1906+0746 est un pulsar binaire découvert en 2005 dans la constellation de l'Aigle. Il fait partie des quelques pulsars binaires découverts à ce jour (2007) et possède une orbite particulièrement serrée, sa période orbitale étant inférieure à 4 heures, ce qui en fait le second pulsar binaire le plus serré à ce jour, après le pulsar double PSR J0737-3039. En particulier, son orbite est plus serrée que celle du premier pulsar binaire découvert, PSR B1913+16 et est siège d'importants effets de relativité générale mis en évidence par l'évolution séculaire de son orbite. Il est également, et de loin, le plus jeune pulsar binaire connu. Cette caractéristique laisse entrevoir la possibilité que les pulsars binaires ne sont pas des objets rarissimes et que par conséquent, leur nombre peut-être plus élevé que prévu rend plus probable l'observation de l'émission d'ondes gravitationnelles émises lors de la fusion des deux astres d'un tel système binaire.
PSR J1906+0746 a été découvert courant 2004 au radiotélescope de l'observatoire d'Arecibo (Porto Rico). L'annonce de sa découverte a été faite en 2005 et publiée en 2006. Ses signaux avaient auparavant été observés au radiotélescope de Parkes en 1998, avec un rapport signal sur bruit suffisamment élevé pour permettre une détection, mais d'importantes interférences de période proches de la période de rotation du pulsar avaient alors empêché sa mise en évidence. Comme la majeure partie des pulsars jeunes, PSR J1906+0746 est situé à proximité du plan galactique, seul lieu connu de formation des étoiles suffisamment massives pour exploser en supernova et donner naissance à des pulsars. Sa latitude galactique est de 0,1° seulement.
L'orbite de PSR J1906+0746 peut pendant un temps relativement bref être décrite de façon satisfaisante par les lois de la gravitation universelle. Cependant, sur le long terme, elle s'en écarte sensiblement, en raison du fait que le champ gravitationnel subi par chacun des astres du système est suffisamment important pour que des effets issus de la relativité générale aient à être pris en compte. Les écarts au comportement prédit par la gravitation universelle sont mis en évidence par des quantités appelées paramètres post-képlériens.
La période orbitale du système est de 3,98 heures. Son excentricité est modérée, étant mesurée à 0,085. Ce système émet, comme tous les pulsars binaire en orbite resserrée des ondes gravitationnelles provoquant une lente usure de l'orbite, et par suite une diminution de sa période orbitale. Cette usure de l'orbite amènera à terme les deux astres à entrer en collision, dont résultera un trou noir. Le temps séparant l'époque actuelle de la coalescence demeure très long : environ 300 millions d'années. Ce temps est significativement plus long que le temps de coalescence de PSR B1913+16, pourtant en orbite moins resserrée. La raison à cela est que cet autre pulsar binaire émet des ondes gravitationnelles à un taux plus élevé que PSR J1906+0746 du fait de son excentricité orbitale bien plus élevée. La connaissance d'un tel système, même loin de sa phase de coalescence reste cruciale pour l'étude future des ondes gravitationnelles, car il permet d'envisager de proposer une estimation sur le taux de formations de tels systèmes et par suite d'estimer le taux de coalescences attendu dans un volume donné, mesurant éventuellement plusieurs centaines de millions d'années-lumière, correspondant à la région où une telle coalescence serait identifiable par les détecteurs d'ondes gravitationnelles tels VIRGO et LIGO. Le taux de formation de systèmes tels PSR B1906+0746 est estimé à un tous les 60 millions d'années dans notre Galaxie (voir ci-dessous).
D'autres effets relativistes sont également observables dans ce système, notamment la précession du périastre prédite par la relativité générale, qui vaut ici 7,57 degrés par an, soit près du double de PSR B1913+16 (et moitié moins que PSR J0737-3039). L'inclinaison du plan orbital du système est contrainte par la valeur de l'avance du périastre et la fonction de masse du système. Elle est considérée comme étant comprise entre 42° et 51°. Une telle valeur ne permet malheureusement pas de mesurer l'effet Shapiro, c'est-à-dire le léger retard des signaux du pulsar quand ceux-ci passent au voisinage du compagnon. Sans effet Shapiro ou observations d'un signal émis par le compagnon, il demeure impossible d'espérer mesurer séparément et précisément les masses individuelles des deux astres.
Enfin, on observe une lente variation du profil du signal émis par ce pulsar, phénomène également observé dans plusieurs autres pulsars binaires (PSR B1913+16, PSR J0737-3039, PSR B1534+12, PSR J1141−6545). L'interprétation usuelle de ce phénomène est que l'axe de rotation du pulsar change au cours du temps, en raison d'un phénomène de précession appelé précession géodétique. La relativité générale prédit en effet qu'un objet en rotation sur lui-même et en orbite autour d'un autre objet sera le siège d'une variation de son moment cinétique propre (et de son axe de rotation, donc) résultant de l'existence de son moment cinétique orbital. Par analogie avec un phénomène semblable observé en mécanique quantique, on parle de couplage spin-orbite, ou de précession géodétique. La période de ce phénomène de précession dépend des masses relatives des deux astres du système et est comprise, en tenant compte des contraintes existant sur celles-ci, entre 164 et 225 ans. Pour l'heure, le phénomène de précession géodétique amène peu à peu le faisceau du pulsar dans une configuration plus favorable du point de vue observationnel : le pulsar apparaît plus lumineux dans le domaine radio aujourd'hui qu'il n'était lors de son observation non détectée de 1998. Il n'est cependant pas possible de prédire aujourd'hui pendant combien de temps cette tendance se produira ou à partir de quand le pulsar est susceptible de devenir inobservable comme cela sera semble-t-il le cas pour PSR B1913+16 à partir de 2025 et ce pour plusieurs décennies.