En géométrie, un symbole de Wythoff est une notation courte, créée par le mathématicien Willem Abraham Wythoff, pour nommer les polyèdres réguliers et semi-réguliers utilisant une construction kaléidoscopique, en les représentant comme des pavages sur la surface d'une sphère, sur un plan euclidien ou un plan hyperbolique.
Le symbole de Wythoff donne 3 nombres p,q,r et une barre verticale positionnelle (|) qui sépare les nombres avant et après elle. Chaque nombre représente l'ordre des miroirs à un sommet du triangle fondamental.
Chaque symbole représente un polyèdre uniforme ou un pavage, bien qu'un même polyèdre/pavage puisse avoir des symboles de Wythoff différents à partir de générateurs symétriques différents. Par exemple, le cube régulier peut être représenté par 3 | 4 2 avec une symétrie Oh et 2 4 | 2 comme un prisme carré avec deux couleurs et une symétrie D4h, autant que 2 2 2 | avec 3 couleurs et une symétrie D2h.
Il existe 7 points générateurs avec chaque ensemble de p,q,r : (et quelques formes particulières)
Général | Triangle droit (r=2) | |||
---|---|---|---|---|
Description | Symbole de Wythoff | Configuration de sommet | Symbole de Wythoff | Configuration de sommet |
régulier et quasi-régulier | q | p r | (p.r)q | q | p 2 | pq |
p | q r | (q.r)p | p | q 2 | qp | |
r | p q | (q.p)r | 2 | p q | (q.p)² | |
tronqué et développé | q r | p | q.2p.r.2p | q 2 | p | q.2p.2p |
p r | q | p.2q.r.2q | p 2 | q | p.2q.2q | |
p q | r | 2r.q.2r.p | p q | 2 | 4.q.4.p | |
faces paires | p q r | | 2r.2q.2p | p q 2 | | 4.2q.2p |
p q (r s) | | 2p.2q.-2p.-2q | p 2 (r s) | | 2p.4.-2p.4/3 | |
adouci | | p q r | 3.r.3.q.3.p | | p q 2 | 3.3.q.3.p |
| p q r s | (4.p.4.q.4.r.4.s)/2 | - | - |
Il existe trois cas particuliers :
Il existe 4 classes de symétrie de réflexions sur la sphère, et 2 pour le plan euclidien et infiniment beaucoup pour le plan hyperbolique, les premières :
Sphérique dièdrique | Sphérique | |||
---|---|---|---|---|
D2h | D3h | Td | Oh | Ih |
*222 | *322 | *332 | *432 | *532 |
(2 2 2) |
(3 2 2) | 100px ( 3 3 2) | 100px (4 3 2) | 100px (5 3 2) |
Les groupes de symétrie ci-dessus incluent seulement les solutions entières sur la sphère. La liste des triangles de Schwarz incluent des nombres rationnels, et déterminent l'ensemble entier de solutions des polyèdres uniformes.
Plan euclidien | Hyperbolique | ||
---|---|---|---|
p4m | p3m | p6m | |
*442 | *333 | *632 | *732 |
100px (4 4 2) |
(3 3 3) |
(6 3 2) |
(7 3 2) |
Dans les pavages ci-dessus, chaque triangle est un domaine fondamental, coloré par réflexions paires et impaires.