Symbole de Wythoff - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Exemple des triangles de construction de Wythoff avec les 7 points générateurs. Les droites des miroirs actifs sont colorés en rouge, jaune et bleu avec les 3 noeuds qui leur sont opposés associés par le symbole de Wythoff.

En géométrie, un symbole de Wythoff est une notation courte, créée par le mathématicien Willem Abraham Wythoff, pour nommer les polyèdres réguliers et semi-réguliers utilisant une construction kaléidoscopique, en les représentant comme des pavages sur la surface d'une sphère, sur un plan euclidien ou un plan hyperbolique.

Le symbole de Wythoff donne 3 nombres p,q,r et une barre verticale positionnelle (|) qui sépare les nombres avant et après elle. Chaque nombre représente l'ordre des miroirs à un sommet du triangle fondamental.

Chaque symbole représente un polyèdre uniforme ou un pavage, bien qu'un même polyèdre/pavage puisse avoir des symboles de Wythoff différents à partir de générateurs symétriques différents. Par exemple, le cube régulier peut être représenté par 3 | 4 2 avec une symétrie Oh et 2 4 | 2 comme un prisme carré avec deux couleurs et une symétrie D4h, autant que 2 2 2 | avec 3 couleurs et une symétrie D2h.

Tableau de résumé

Il existe 7 points générateurs avec chaque ensemble de p,q,r : (et quelques formes particulières)

Général Triangle droit (r=2)
Description Symbole
de Wythoff
Configuration
de sommet
Symbole
de Wythoff
Configuration
de sommet
régulier et
quasi-régulier
q | p r (p.r)q q | p 2 pq
p | q r (q.r)p p | q 2 qp
r | p q (q.p)r 2 | p q (q.p)²
tronqué et
développé
q r | p q.2p.r.2p q 2 | p q.2p.2p
p r | q p.2q.r.2q p 2 | q p.2q.2q
p q | r 2r.q.2r.p p q | 2 4.q.4.p
faces paires p q r | 2r.2q.2p p q 2 | 4.2q.2p
p q (r s) | 2p.2q.-2p.-2q p 2 (r s) | 2p.4.-2p.4/3
adouci | p q r 3.r.3.q.3.p | p q 2 3.3.q.3.p
| p q r s (4.p.4.q.4.r.4.s)/2 - -
Les 8 formes pour les constructions de Wythoff à partir d'un triangle général (p q r).

Il existe trois cas particuliers :

  • p q (r s) | - C'est un mélange de p q r | et p q s |.
  • | p q r - Les formes adoucies (alternées) donnent cet autre symbole inhabituel.
  • | p q r s - Une forme unique adoucie pour le U75 qui n'est pas constructible au sens de Wythoff.

Les triangles de symétrie

Il existe 4 classes de symétrie de réflexions sur la sphère, et 2 pour le plan euclidien et infiniment beaucoup pour le plan hyperbolique, les premières :

  1. (p 2 2) symétrie dièdrique p=2,3,4... (Ordre 4p)
  2. (3 3 2) symétrie tétraédrique (Ordre 24)
  3. (4 3 2) symétrie octaèdrique (Ordre 48)
  4. (5 3 2) symétrie icosaèdrique (Ordre 120)
  5. (4 4 2) - symétrie *442 - Triangle 45-45-90 (inclut le domaine carré (2 2 2 2))
  6. (3 3 3) - symétrie *333 - Triangle 60-60-60
  7. (6 3 2) - symétrie *632 - Triangle 30-60-90
  8. (7 3 2) - symétrie *732 (plan hyperbolique)
Sphérique dièdrique Sphérique
D2h D3h Td Oh Ih
*222 *322 *332 *432 *532
Sphere symmetry group d2h.png
(2 2 2)
Sphere symmetry group d3h.png
(3 2 2)
100px
( 3 3 2)
100px
(4 3 2)
100px
(5 3 2)

Les groupes de symétrie ci-dessus incluent seulement les solutions entières sur la sphère. La liste des triangles de Schwarz incluent des nombres rationnels, et déterminent l'ensemble entier de solutions des polyèdres uniformes.

Plan euclidien Hyperbolique
p4m p3m p6m  
*442 *333 *632 *732
100px
(4 4 2)
Tile 3,6.svg
(3 3 3)
Tile V46b.svg
(6 3 2)
Order-3 heptakis heptagonal tiling.png
(7 3 2)

Dans les pavages ci-dessus, chaque triangle est un domaine fondamental, coloré par réflexions paires et impaires.

Page générée en 0.185 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise