Théorème central limite - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La loi normale, souvent appelée la « courbe en cloche »

Le théorème central limite (parfois appelé théorème de la limite centrale) établit la convergence en loi d'une suite de variables aléatoires vers la loi normale. Intuitivement, ce résultat affirme que toute somme de variables aléatoires indépendantes et identiquement distribuées tend vers une variable aléatoire gaussienne. La première démonstration de ce théorème, en 1812, est due à Pierre-Simon de Laplace, mais le cas particulier où les variables suivent la loi de Bernoulli de paramètre p=0.5 était connu depuis les travaux de De Moivre. Le nom du théorème fait référence au document scientifique écrit par George Pólya en 1920 Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Momentenproblem (Sur le théorème central du calcul probabiliste, parmi ceux ayant rapport à la notion de limite, et le problème des moments).

Le théorème central limite admet plusieurs généralisations qui donnent la convergence de sommes de variables aléatoires sous des hypothèses beaucoup plus faibles. Ces généralisations ne nécessitent pas des lois identiques mais font appel à des conditions qui assurent qu'aucune des variables n'exerce une influence significativement plus importante que les autres. Telles sont la condition de Lindeberg et la condition de Lyapounov. D'autres généralisations autorisent même une dépendance « faible ». De plus, une généralisation due à Gnedenko et Kolmogorov stipule que la somme d'un certain nombre de variables aléatoires avec une queue de distribution décroissante selon \scriptstyle\ 1/|x|^{\alpha+1} avec \scriptstyle\ 0 < \alpha < 2 (ayant donc une variance infinie) tend vers une loi de Lévy tronquée symétrique et stable quand le nombre de variables augmente. Cet article se limitera au théorème de la limite centrale concernant les lois à variance finie.

Ainsi, ce théorème et ses généralisations offrent une explication à l'omniprésence de la loi normale dans la nature : de nombreux phénomènes sont dus à l'addition d'un grand nombre de petites perturbations aléatoires.

Le théorème central limite

Soit X_1, X_2, \cdots une suite de variables aléatoires définies sur le même espace de probabilité, suivant la même loi D et indépendantes. Supposons que l'espérance μ et l'écart-type σ de D existent et soient finis ( \sigma \neq 0 ).

Considérons la somme S_n = X_1 + X_2 + \cdots + X_n . Alors l'espérance de Sn est nμ et son écart-type vaut \sigma \sqrt{n} . De plus, pour parler de manière informelle, la loi de Sn tend vers la loi normale  \mathcal{N} (n \mu , n \sigma^2) quand n tend vers l'infini.

Afin de clarifier cette idée de convergence, nous allons poser

Z_n\ =\ \frac{S_n - n \mu}{\sigma \sqrt{n}}\ =\ \frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\,.

de sorte que l'espérance et l'écart-type de Zn valent respectivement 0 et 1 : la variable est ainsi dite centrée et réduite.

Alors la loi de Zn converge vers la loi normale centrée réduite  \mathcal{N} (0 , 1) lorsque n tend vers l'infini (il s'agit de la convergence en loi). Cela signifie que si Φ est la fonction de répartition de  \mathcal{N} (0 , 1) , alors pour tout réel z :

\lim_{n \to \infty} \mbox{P}(Z_n \le z) = \Phi(z),

ou, de façon équivalente :

\lim_{n\to\infty}\mbox{P}\left(\frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}}\leq z\right)=\Phi(z)

\overline{X}_n=S_n/n=(X_1+\cdots+X_n)/n

Démonstration du théorème central limite

Pour un théorème d'une telle importance en statistiques et en probabilité appliquée, il existe une démonstration particulièrement simple utilisant les fonctions caractéristiques. Cette démonstration ressemble à celle d'une des lois des grands nombres. Pour une variable aléatoire Y d'espérance 0 et de variance 1, la fonction caractéristique de Y admet le développement limité :

\varphi_Y(t) = 1 - {t^2 \over 2} + o(t^2), \quad t \rightarrow 0.

Si Yi vaut \frac{X_i - \mu}{\sigma} , il est facile de voir que la moyenne centrée réduite des observations X1, X2, ..., Xn est simplement :

Z_n = \frac{\overline{X}_n-\mu}{\sigma/\sqrt{n}} = \sum_{i=1}^n {Y_i \over \sqrt{n}}.

D'après les propriétés élémentaires des fonctions caractéristiques, la fonction caractéristique de Zn est

\left[\varphi_Y\left({t \over \sqrt{n}}\right)\right]^n = \left[ 1 - {t^2  \over 2n} + o\left({t^2 \over n}\right) \right]^n \, \rightarrow \, e^{-t^2/2} lorsque n \to +\infty.

Mais cette limite est la fonction caractéristique de la loi normale centrée réduite \mathcal{N}(0,1) , d'où l'on déduit le théorème de la limite centrale grâce au théorème de continuité de Lévy, qui affirme que la convergence des fonctions caractéristiques implique la convergence en loi.

Convergence vers la limite

La convergence de la fonction de répartition de Zn est uniforme, en vertu du deuxième théorème de Dini. Si le moment d'ordre 3, E[(X − μ)3] existe et est fini, alors la vitesse de convergence est au moins d'ordre 1/\sqrt{n} (voir le théorème de Berry-Esseen (en)).

Images d'une loi lissées par sommation qui montrent la distribution de la loi originale et trois sommations successives (obtenues par convolution) :

Central limit thm 1.png Central limit thm 2.png Central limit thm 3.png Central limit thm 4.png

Dans les applications pratiques, ce théorème permet en particulier de remplacer une somme de variables aléatoires en nombre assez grand mais fini par une approximation normale, généralement plus facile à manipuler. Il est donc intéressant de voir comment la somme s'approche de la limite. Les termes utilisés sont expliqués dans Variable aléatoire.

Une somme de variables continues est une variable continue dont on peut comparer la densité de probabilité à celle de la limite normale.

Avec une somme de variables discrètes, il est parfois commode de définir une pseudo-densité de probabilité mais l'outil le plus efficace est la fonction de probabilité représentée par un diagramme en bâtons. On peut constater graphiquement une certaine cohérence entre les deux diagrammes, difficile à interpréter. Dans ce cas, il est plus efficace de comparer les fonctions de répartition.

D'autre part, l'approximation normale est particulièrement efficace au voisinage des valeurs centrales. Certains disent même qu'en matière de convergence vers la loi normale, l'infini commence souvent à six.

La précision se dégrade à mesure qu'on s'éloigne de ces valeurs centrales. C'est particulièrement vrai pour une somme de variables positives par nature : la loi normale fait toujours apparaître des valeurs négatives avec des probabilités faibles mais non nulles. Même si c'est moins choquant, cela reste vrai en toutes circonstances : alors que toute grandeur physique est nécessairement bornée, la loi normale qui couvre un intervalle infini n'est qu'une approximation utile.

Enfin, pour un nombre donné de termes de la somme, l'approximation normale est d'autant meilleure que la distribution est plus symétrique.

Application à la statistique mathématique

Ce théorème de probabilités possède une interprétation en statistique mathématique. Cette dernière associe une loi de probabilité à une population. Chaque élément extrait de la population est donc considéré comme une variable aléatoire et, en réunissant un nombre n de ces variables supposées indépendantes, on obtient un échantillon. La somme de ces variables aléatoires divisée par n donne une nouvelle variable nommée la moyenne empirique. Celle-ci, une fois réduite, tend vers une variable normale réduite lorsque n tend vers l'infini.

Autres formulations du théorème

Densités de probabilité

La densité de probabilité de la somme de plusieurs variables indépendantes s'obtient par convolution de leurs densités (si celles-ci existent). Ainsi on peut interpréter le théorème de la limite centrale comme une formulation des propriétés des densités de probabilité soumises à une convolution : sous les conditions établies précédemment, la convoluée d'un certain nombre de densités de probabilité tend vers la densité normale lorsque leur nombre croît indéfiniment.

Comme la fonction caractéristique d'une convolution est le produit des fonctions caractéristiques des variables en cause, le théorème de la limite centrale peut se formuler d'une manière différente : sous les conditions précédentes, le produit des fonctions caractéristiques de plusieurs densités de probabilité tend vers la fonction caractéristique de la loi normale lorsque le nombre de variables croît indéfiniment.

Produits de variables aléatoires

Le théorème de la limite centrale nous dit à quoi il faut s'attendre en matière de sommes de variables aléatoires indépendantes ; mais qu'en est-il des produits ? Eh bien, le logarithme d'un produit (à facteurs strictement positifs) est la somme des logarithmes des facteurs, de sorte que le logarithme d'un produit de variables aléatoires (à valeurs strictement positives) tend vers une loi normale, ce qui entraîne une loi log-normale pour le produit lui-même. Bon nombre de grandeurs physiques (en particulier la masse et la longueur, c'est une question de dimension, ne peuvent être négatives) sont le produit de différents facteurs aléatoires, de sorte qu'elles suivent une loi log-normale. Il en va de même pour le cours en Bourse d'un actif risqué.

Page générée en 0.197 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise