Théorème d'Abel (algèbre) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Histoire

Une vision d'ensemble de la théorie des équations, traitant en particulier du théorème d'Abel, est donnée dans l'article théorie des équations.

Genèse

Si la première étude systématique des équations algébriques remonte au VIIIe siècle, dans l'Abrégé du calcul par la restauration et la comparaison du mathématicien arabe Al-Khawarizmi, l'idée d'associer une structure de groupe à l'équation n'apparaît qu'au XVIIIe siècle. Joseph-Louis Lagrange met en évidence la relation entre les propriétés d'un groupe de permutations des racines et la possibilité de résolution d'une équation cubique ou quartique. S'il est possible de voir dans ces travaux l'origine de l'utilisation des permutations dans ce domaine, en revanche, ne sont utilisés ni la loi de composition ni l'ensemble des permutations comme une structure propre. Son approche est toutefois suffisante pour émettre un sérieux doute sur l'existence d'une formule exprimant les racines d'un polynôme quelconque de degré n, si n est strictement supérieur à 4.

Paolo Ruffini

Paolo Ruffini est le premier à affirmer que l'équation générale et particulièrement l'équation quintique n'admet pas de solution. Il reprend la démarche de Lagrange qui montre que toutes les méthodes utilisées jusqu'ici reviennent à des cas particuliers d'une approche plus générale. Ruffini montre que la méthode de Lagrange ne peut fournir, pour l'équation de degré cinq, de formule équivalente à celle de Cardan pour le degré trois. Il publie un livre sur cette question en 1799.

La communauté scientifique de l'époque ne reconnaît pas son travail. Il envoie son livre à Lagrange en 1801, mais n'obtient aucune réponse. Une présentation officielle à l'Académie des sciences, n'obtient pas plus de succès. Lagrange, Legendre et Lacroix, trois mathématiciens sont chargés d'évaluer la validité de sa preuve. Le rapport décrit son travail comme sans importance, sa démonstration comporte une lacune, rien n'indique qu'il n'existerait pas d'autres méthodes, différentes de celle de Lagrange et donc de toutes celles trouvées jusque là, et qui permettrait une résolution par radical. Une nouvelle tentative, auprès de la Royal Society anglaise obtient une réponse plus sympathique: si un tel travail n'entre pas dans sa compétence, les résultats ne semblent néanmoins pas contenir d'erreur. Deux autres publications en 1803 et 1808 n'auront guère plus de succès. Pour les mathématiciens de l'époque, le résultat est soit faux, soit anecdotique. Seul Augustin Louis Cauchy comprend la profondeur de son travail. Il lui envoie une lettre en 1821 dans laquelle il indique à la fois la validité et l'importance de la question traitée. Cauchy généralise le résultat sur les permutations à la base des travaux de Ruffini.

Niels Henrik Abel

Après une tentative infructueuse en 1821, le mathématicien norvégien Niels Henrik Abel publie, à ses propres frais un petit texte de six pages. A la différence des travaux de Ruffini, ce document représente une preuve complète du théorème. Il obtient néanmoins une incompréhension analogue à celle des textes précédents. Même Carl Friedrich Gauss juge le sujet sans intérêt. La lettre d'Abel sera retrouvée après la mort de Gauss non décachetée. En 1801, ce mathématicien avait exprimé dans sa thèse que la recherche de solution par radicaux était sans intérêt, il suffisait de donner un nom quelconque à la racine. Il est vrai qu'en termes de technique numérique, il est beaucoup plus simple d'utiliser une méthode comme celle de Newton pour obtenir une valeur approchée d'une racine, la résolution par radical ne possède plus au XIXe siècle le même intérêt qu'il avait les siècles précédents pour le calcul numérique. Et, si ce n'est pas pour obtenir une approximation numérique, alors autant utiliser une lettre pour décrire la racine. Même Cauchy, qui reçoit Abel en 1826 daigne à peine jeter un coup d'œil à ses travaux.

D'autres articles furent écrits entre 1826 et 1828, contenant la preuve de l'impossibilité de la résolution dans le cas général. Les travaux d'Abel finissent par convaincre la communauté scientifique. En 1830 Cauchy retrouve son manuscrit, et Abel finit par obtenir le grand prix de mathématiques de l'Académie des sciences la même année à titre posthume.

Évariste Galois

Évariste Galois 1811-1832

Après les travaux d'Abel, seuls trois éléments manquent pour une expression finale du théorème: une approche effective, la condition nécessaire et suffisante de résolubilité de l'équation et une compréhension profonde des mécanismes qui rendent possible la résolubilité. C'est Évariste Galois qui réalise ces trois progrès.

Son approche subit la même incompréhension que ses prédécesseurs. Ses premiers écrits, présentés à l'Académie des sciences dès 1829 sont définitivement perdus. Un article de l'auteur écrit en 1831 est redécouvert par Joseph Liouville qui le présente à la communauté scientifique en 1843 en ces termes: "...J'espère intéresser l'Académie en lui annonçant que dans les papiers d'Évariste Galois j'ai trouvé une solution aussi exacte que profonde de ce beau problème : Étant donnée une équation irréductible, décider si elle est ou non résoluble par radicaux.". L'apport de Galois est majeur, G. Verriest le décrit dans les termes suivants:"le trait de génie de Galois c'est d'avoir découvert que le nœud du problème réside non pas dans la recherche directe des grandeurs à adjoindre, mais dans l'étude de la nature du groupe de l'équation. Ce groupe (...) exprime le degré d'indiscernabilité des racines (...). Ce n'est donc plus le degré d'une équation qui mesure la difficulté de la résoudre mais c'est la nature de son groupe."

Page générée en 0.104 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise