Théorie des équations (histoire des sciences) - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les théories de Galois

Œuvre de Galois

Évariste Galois naît en 1811, soit huit ans après Abel. Il n’a que 14 ans lors de la publication du théorème de son prédécesseur. Quand il trouve une nouvelle démonstration, il n’est probablement pas au courant de l’article d’Abel. De façon certaine, sa démarche est différente. Elle entre plus dans la tradition de Gauss que dans celle de Lagrange ou de Cauchy. Il s’intéresse aux permutations qui laissent invariants tous polynômes en plusieurs indéterminées, appliquées aux racines, tout comme Lagrange, Cauchy ou Abel. Cependant, à l’image de Gauss, il concentre ses efforts sur l’étude de la loi de composition, il précise : « dans le groupe de permutations dont il s’agit ici, la disposition des lettres n’est point à considérer, mais seulement les substitutions de lettres par lesquelles on passe d’une permutation à l’autre ». Il donne le nom de groupe formel à cette structure, qu’il considère comme incarnée par des permutations, mais qui possède aussi une existence abstraite. À la différence de Gauss, il n’étudie pas le cas particulier de l’équation cyclotomique, dont le groupe est très simple, car cyclique, mais le cas général.

À l’aide de cet outil maintenant appelé groupe de Galois, le mathématicien établit trois résultats, le théorème de l'élément primitif, le théorème fondamental de la théorie de Galois et une nouvelle mouture du théorème d’Abel, plus profonde que la précédente puisqu’il donne une condition nécessaire et suffisante de résolubilité. G. Verriest décrit les travaux du mathématicien dans les termes suivants : « [...] le trait de génie de Galois c’est d’avoir découvert que le nœud du problème réside non pas dans la recherche directe des grandeurs à adjoindre, mais dans l’étude de la nature du groupe de l’équation. Ce groupe [...] exprime le degré d’indiscernabilité des racines [...]. Ce n’est donc plus le degré d’une équation qui mesure la difficulté de la résoudre mais c’est la nature de son groupe. » Un peu à l’image des réflexions de Lagrange, ces trois théorèmes font le tour complet de la théorie des équations. Mais en plus d’englober les méthodes passées, Galois donne aussi une vision qui permet de comprendre la nature de toute équation algébrique, résoluble ou non.

L’accueil qu’il reçoit est encore plus glacial que celui d’Abel. Cette fois-ci, Cauchy n’oublie pas l’article que lui envoie Galois, mais le perd carrément. Un nouvel envoi de ses travaux sur les équations elliptiques provoque le commentaire suivant : « le raisonnement n’en est pas assez clair, ni assez développé pour lui permettre d’en juger la rigueur. »

Naissance de l'algèbre moderne

On utilise souvent les expressions d'« inventeur » ou de « père » de l’algèbre moderne pour désigner Galois. Alain Connes, un spécialiste du domaine, précise : « Galois, à l’âge de 19 ans, a déjà à son actif des résultats mathématiques d’une portée incomparable qui sont l’acte de naissance des mathématiques contemporaines ». Pour comprendre la raison d’être d’un tel propos, il est utile de regarder ce qu’est l’algèbre du milieu de XIXe siècle. En 1854, Serret publie un livre Cours d’Algèbre supérieur qu’il définit comme « l’Algèbre est, à proprement parler, l’analyse des équations, les diverses théories partielles qu’elle comprend se rattachent toutes, plus ou moins, à cet objet principal. » Cette vision, que confirmait déjà Al-Khayyam dans son grand traité écrit au XIe siècle, était dès l’époque de Gauss puis de Galois, déjà devenue obsolète.

Depuis Al-Khawarizmi et jusqu’à la fin du XVIIIe siècle, la théorie des équations est une théorie de formules. Les maîtres arabes, tout autant que ceux de la Renaissance italienne, procèdent de cette logique pour résoudre les équations de bas degrés, ou quand à l’aide d’un discriminant, ils établissent l’existence de racines multiples. Le langage de Viète, ne sert finalement qu’à mieux les exprimer, ce qui permet de trouver d’autres formules comme les relations entre coefficients et racines. Lagrange entre dans cette tradition dans ses réflexions, même si finalement il en établit le caractère aléatoire et aventureux pour les degrés plus élevés.

La logique de Galois est en rupture par rapport à cet héritage millénaire. Liouville, qui la redécouvre 11 ans après la mort de son auteur, la présente à l’Académie des sciences avec les propos suivants : « Cette méthode, vraiment digne de l’attention des géomètres, suffirait seule pour assurer à notre compatriote un rang dans le petit nombre des savants qui ont mérité le titre d’inventeur. » Ce sont, avant tout, des structures que Galois met en évidence. La première, déjà citée, est celle de groupe. La redécouverte des idées de Galois la met en première ligne : Cauchy ne publie pas moins de vingt-cinq articles sur cette question après la présentation de Liouville, dont un porte encore son nom. En 1870, Camille Jordan publie un livre présentant les travaux de Galois essentiellement comme une théorie sur les groupes. Un autre aspect n’est pas passé sous silence. Chez Galois, les éléments du groupe sont aussi des symétries d’un espace géométrique. Cet angle d’analyse, que l’on considère maintenant comme de l’algèbre linéaire est l’une des idées fondatrices développées dans le livre de Jordan. Ces aspects structurels, à travers l’analyse des diviseurs de la dimension d’un espace vectoriel, est la manière la plus simple de démontrer des conjectures plusieurs fois millénaires, à savoir la trisection de l’angle ou la duplication du cube. Le titre du livre de Jordan Traité des substitutions et des équations algébriques est à cet égard évocateur : le terme de substitution est, en effet, celui utilisé à l’époque pour désigner une application linéaire. Plus tard, à la fin du XIXe siècle, à la suite des travaux de Dedekind et Kronecker, Weber identifie la théorie de Galois à celle des corps commutatifs.

La logique structurelle initiée par Galois est à l'origine d'une profonde mutation, elle ne touche pas uniquement le périmètre de la théorie des équations qui devient l'algèbre au sens contemporain du terme, mais toute la mathématique.

Page générée en 0.121 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise