Son nom exact est In artem analyticem Isagoge (1591) ; il est le programme déclaré de ce vaste projet axiomatique.
L'ouvrage, de 18 pages, disponible sur Gallica, est écrit en latin par François Viète. Il s'annonce comme le premier d'une série divisée en dix parties :
Il fournit à lui seul une approche nouvelle de l'écriture algébrique et s'ouvre sur la fameuse dédicace à la princesse mélusinide Catherine de Parthenay dont on trouvera une traduction par Frédéric Ritter.
Dans une première partie, Viète donne les définitions de son analyse spécieuse. Celle-ci se décompose dans un mouvement ternaire : Zététique, Poristique, Exégétique. Elle a pour but de fournir la Doctrine pour bien inventer en Mathématiques.
Il s'agit de la mise en place, concomitante, d'une axiomatique de calculs sur les grandeurs (connues et inconnues) et d'un programme, censé fournir des règles euristiques, qui impose trois étapes à la résolution d'un problème algébrique ou géométrique : la Formalisation, la Résolution générale, la Résolution particulière.
Viète y ajoute que, contrairement aux anciens analystes, sa méthode fait agir la résolution sur des symboles (non iam in numeris sed sub specie), ce qui en est un des apports majeurs. Il prédit en outre, qu'après lui, la formation à la Zététique se fera par l'analyse des symboles et non par celle des chiffres.
Viète continue, dans cette seconde partie, à décrire les symboles employés dans les égalités et les proportions ; il donne des règles axiomatiques :
La transitivité de l'égalité, sa conservation par somme, soustraction, produit, et division,
Viète poursuit ensuite en donnant les lois d'homogénéité ; distinguant ainsi les symboles selon leur puissances, 1 étant le côté (ou racine), 2 le carré, 3 le cube, etc. Cela exige que les facteur de ces puissances soient d'homogénéité complémentaire, qu'il note
1. Longueur, 2 Plane, 3 Solide, puis 4 Plane/Plane, 5 Plane/Solide, 6 Solide/Solide, etc comme s'il avait l'intuition qu'une géométrie puisse se déployer au-delà de l'ordinaire dimension 3.
Viète fournit dans ce quatrième chapitre les préceptes de la logique spécieuse, c'est-à-dire les axiomes d'addition, de produit, etc, de symboles désignant des grandeurs de natures comparables.
Dans un premier temps, son attention se porte sur l'addition des grandeurs de même ordre, leur soustraction, en donnant des règles comme A − (B + D) = A − B − D ou A − (B − D) = A − B + D
Puis, dans un second temps sur la dénomination des produits de quantités homogènes, sur la dénomination des quotients. Il note alors
ce qu'on note aujourd'hui
Dans ce chapitre se trouve renfermés les fondements de la formulation des équations et particulièrement dans le point 5 de ce chapitre, l'idée qu'il convient de réserver certaines lettres aux quantités connues (datas) et d'autres aux quantités inconnues (incertitus), Viète désignant, dans une première version, les premières par des voyelles et les secondes par des consonnes.
Suivent alors quelques propositions.
L'ouvrage se termine sur deux courts chapitres qui décrivent comment en pratique, il convient de mener l'analyse du problème, sa résolution et sa vérification géométrique.
Viète développe l'idée que, une fois la modélisation achevée par l'art de la zététique, le mathématicien produit ses théorèmes selon son invention et dans les règles de la syntaxe, comme cela a été établi depuis l'antiquité avec Apollonius, Théon et Archimède.
Divisant l'exégétique en deux parts, une numéreuse et une géométrique, Viète explicite dans ce chapitre la nécessité de transformer la 'formule' générale obtenue à la fin de l'examen poristique en un résultat chiffré ou une construction géométrique. Le mathématicien doit, selon les cas, se faire arithméticien, en montrant qu'il sait extraire les racines et calculer leurs affectations ou géomètre et établir par une figure le résultat vrai. Il précise d'ailleurs que le résultat obtenu sur les lettres est également vrai, mais d'une vérité d'une autre nature qu'il ne précise pas.
Dans cette dernière partie, Viète définit encore quelques notations, et résume les vingt-neuf étapes du raisonnement ; il y définit notamment les racines d'ordre 1 et 2 (en fait carrée et cubique dans la nomenclature actuelle). À la fin de ce chapitre il annonce que, par cette méthode, on pourra résoudre le problème de tous les problèmes, à savoir : ne laisser aucune question irrésolue ou Non nullum probeblum solvere
Le manuscrit publié par Vasset contient en place de la définition de la poristique et de l'exégétique, quelques résultats sur le développement du binôme (jusqu'au degré 6) et des théorèmes généraux de poristique dont la façon d'insérer tant de moyennes proportionnelles qu'on voudra entre deux longueurs.
Ce qui signifie que la suite A6,A5B,A4B2,A3B3,A2B4,AB5,B6 est géométrique.
Traduisant Viète, Vasset écrit :
A -B cubus cubus aequabitur A cubo-cubus - 6 A quadrato-cubus in B +15 A quad.quad. i n B quad. -20 A cubus in B cubum + 15A quadratum in B quad.-quad- 6 A B quad.-cub. + B cubus-cubus
en place de (A − B)6 = A6 − 6A5B + 15A4B2 − 20A3b3 + 15A2B4 − 6AB5 + B6.
Il donne ensuite la règle de formation des coefficients binomiaux (déjà connue de Tartaglia et de Stiffel), notant que pour former les coefficients du développement, il suffit d'additionner, dans le développement de la puissance précédente, le premier et le second coefficient, le second et le troisième, etc. Ce qui donne en pratique le triangle de Pascal.