L’algèbre nouvelle, logistique ou analyse spécieuse, est un projet de formalisation de l’écriture algébrique réalisé par François Viète et par ses successeurs. L'acte fondateur en est la parution chez Jamet Mettayer (en 1591) de l'artem Analyticem Isagoge. Son apparition conduit, fin XVIe - début XVIIe siècle, à l'abandon progressif de l'algèbre rhétorique. Ce formalisme a évolué selon les rédacteurs, notamment sous l'impulsion d'Anderson, de Vaulezard, de James Hume de Godscroft et de Pierre Hérigone. Lorsqu'en 1637, René Descartes illustre sa méthode par un traité de géométrie, le philosophe achève cette révolution. En supprimant les contraintes d'homogénéité introduites par Viète, il fournit à l'algèbre sa forme littérale actuelle (ou peu s'en faut).
Jusqu'à 1591 la formalisation du langage algébrique s'est limitée à l'introduction d'une ou deux lettres, désignant une ou deux quantités inconnues. On trouve cette innovation fondamentale dans Jordan Nemorarius à la frontière du XIIe ‑ XIIIe siècle, mais cette symbolisation, déjà connue des Grecs ne progresse pas jusqu'à Jacques Pelletier du Mans, Jean Borrel et Guillaume Gosselin. Cette notation, qui n'est pas utilisée de façon suivie par les mathématiciens médiévaux disparaît même à l'aube de la Renaissance, où l'on use davantage d'abréviations. Des premières traductions de Johannes Hispalensis jusqu'à Nicolas Chuquet ou Regiomontanus, on ne peut pas vraiment parler d'algèbre littérale. Comme le note F.Russo :
« La symbolisation des quantités indéterminées se rencontre déjà chez les Grecs ; également au Moyen Age, notamment chez Léonard de Pise et Jordanus Nemorarius ; mais ces symboles ne sont pas vraiment engagés dans une « technique opératoire ». Ils demeurent comme à l'état statique. Les symboles de quantités indéterminées ne se rencontrent pas avant Viète chez les algébristes du XVIe siècle. Celui-ci, le premier, renoue avec la tradition antique et médiévale, mais en la conjuguant avec une technique opératoire qui va lui donner toute sa fécondité. »
Les mathématiciens du XVIe siècle éprouvent d'ailleurs les pires difficultés à manier formellement des équations polynomiales ; la même lettre sert parfois à désigner en même temps l’inconnue et la racine carrée, comme chez Peletier (en 1554), Jean Borrel (en 1559) et Gosselin, (en 1577). L'arithmétique demeure rhétorique et il est d'usage de justifier géométriquement les résolutions de problèmes algébriques. Les efforts de l'école allemande portant davantage sur la structuration des opérations que sur leur formalisation, la mise en place de la notation symbolique s'effectue de façon dispersée.
L'enseignement de Pierre de la Ramée et les résolutions de systèmes numériques exposés par ses élèves vont cependant préparer une rupture radicale. Pierre de la Ramée, dit Ramus, a restauré la place des mathématiques dans l'université. Logicien, lettré hellénisant, latinisant et hébraïsant, il s'est opposé à la pensée d'Aristote et a construit son propre système de logique binaire, où l'homogénéité joue un rôle fondamental. Ses « élèves », Guillaume Gosselin et Jacques Pelletier du Mans ont introduit une première notation formelle pour les inconnues des systèmes numériques de deux équations linéaires. Pour autant, leur algèbre demeure tout au plus syncopée.
En Italie, Francesco Maurolico, maître de Federico Commandino et de Clavius publie en 1575, année de sa mort, quelques propositions faisant intervenir des lettres par leur produit, noté "A in B" et dénommé "C plano" en respectant l'homogénéité des formules. L'influence de ses ouvrages sur Viète demeure inconnue, il convient néanmoins de noter la similitude des idées de Maurolico (alias Marule) et de ses préoccupations, géométriques et cosmographiques, avec celles de Viète. Pour autant, l'écriture du père Francesco de Messine demeure marginale dans son œuvre, et dépourvue de théorisation.
Dans ce contexte, la publication de l'Isagoge par François Viète inaugure le début d'une nouvelle ère et annonce la formalisation algébrique contemporaine.