En effet, l'ordre du groupes des unités de Z/nZ est égal à φ(n), le théorème de Lagrange sur les groupes permet de conclure.
Ces différentes propriétés montrent que l'ensemble des caractères de conducteur n forme un groupe abélien.
Cette propriété est le propre de l'ensemble des caractères de tout groupe abélien fini. Elle est démontrée dans le paragraphe Groupe abélien de l'article Caractère d'un groupe fini.
Ici CU désigne l'ensemble des fonctions du groupe des unités à valeurs complexes. C'est un espace vectoriel complexe. Il peut être muni du produit hermitien noté ici < , > et défini par :
Ici le conjugué d'un nombre complexe c est noté c*.
Cette propriété est aussi générale à tout groupe de caractères d'un groupe abélien fini, elle est démontrée dans le paragraphe Algèbre du groupe de l'article Caractère d'un groupe fini.
La transformée de Fourier d'une fonction f de CU est définie, c'est une fonction notée ici
La théorème de Plancherel exprime l'égalité suivante :
En effet, si p est un nombre premier diviseur de n différent de deux alors p - 1 est un diviseur de φ(n) et p - 1 est pair. Sinon n est égal à 2r où r est un entier strictement supérieur à 1 et φ(n) est égal à 2r - 1.
En effet, si le conducteur est une puissance d'un nombre premier impair, alors le groupe des unités est cyclique (cf le paragraphe Cas où n n'est pas premier de l'article Anneau Z/nZ). L'ordre du groupe multiplicatif est pair, il existe donc un unique élément d'ordre deux. Le groupe des caractères, isomorphe au groupe multiplicatif ne contient lui aussi qu'un élément d'ordre deux.
Si un caractère est à valeurs réelles, comme les valeurs sont des racines de l'unité, elles ne peuvent être égales qu'à 1 ou -1, elle est donc d'ordre deux. Comme il n'existe qu'un élément d'ordre deux, il n'existe qu'un caractère à valeur réelles différent du caractère principal. Or le symbole de Legendre est un caractère non principal. Ce qui termine la démonstration.
Les caractères de Dirichlet et leurs séries L furent introduits par Dirichlet, en 1831, en vue de prouver le théorème de Dirichlet à propos de l'infinité des nombres premiers dans les progressions arithmétiques. L'extension aux fonctions holomorphes fut accomplie par Bernhard Riemann.