Groupe abélien fini - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

Leopold Kronecker

En mathématiques et plus précisément en algèbre, les groupes abéliens finis correspondent à une sous-catégorie de la catégorie des groupes.

Un groupe abélien fini est un groupe commutatif dont le cardinal est fini. Il correspond à un cas particulier des groupes abéliens de type fini. Ce concept dispose néanmoins d'une histoire propre et de nombreuses applications spécifiques, aussi bien théoriques comme en arithmétique modulaire qu'industrielles comme pour les code correcteurs.

Ces groupes vérifient une propriété forte : le théorème de Kronecker qui indique qu'ils sont tous des produits directs de groupes cycliques.

Histoire

Niels Abel 1802-1829
Évariste Galois 1811-1832

En 1824, le mathématicien norvégien Niels Henrik Abel publie, à ses propres frais un petit texte de six pages étudiant la question de la résolution de l'équation générale du cinquième degré. Il met en évidence l'importance du caractère commutatif d'un ensemble de permutations. Un groupe commutatif porte maintenant le terme d'abélien en référence à cette découverte.

Évariste Galois étudie la même question. En 1831, il utilise pour la première fois le terme de groupe formel. Cet article est publié quinze ans plus tard par le mathématicien Joseph Liouville . Durant la deuxième moitié du XIXe siècle, l'étude des groupes finis apparait essentiel, initialement pour le développement de la théorie de Galois.

De nombreuses années sont néanmoins nécessaires pour définir cette notion de groupe formel. Kronecker est un acteur de cette axiomatisation. Il donne en 1870 une définition équivalente à celle maintenant utilisée pour un groupe abélien fini. La définition générale est souvent attribuée à Heinrich Weber .

En 1853 Leopold Kronecker annonce que les extensions finies des nombres rationnels ayant un groupe de Galois abélien sont les sous-corps des extensions cyclotomiques. Sa démonstration du théorème maintenant connu sous le nom de théorème de Kronecker-Weber est fausse, il faudra les apports de Richard Dedekind , Heinrich Weber et enfin David Hilbert pour une preuve rigoureuse. Ce contexte est celui qui amena Kronecker à démontrer le théorème fondamental des groupes abéliens finis qui porte maintenant son nom dans son article de 1870.

Applications

Analyse harmonique

Un groupe abélien fini possède des caractères de groupe remarquables, les caractères du groupe sont isomorphes au groupe lui-même. La théorie de l'analyse harmonique est alors simple à établir. Il est ainsi possible de définir la transformation de Fourier ou le produit de convolution. Les résultats usuels comme l'égalité de Parseval, la théorème de Plancherel ou encore la formule sommatoire de Poisson sont vérifiés.

Arithmétique modulaire

Gustav Lejeune Dirichlet

Une structure largement utilisé en théorie algébrique des nombres est celle de Z/pZ et particulièrement son groupe des unités. Cette approche est la base de l'arithmétique modulaire. Si p est un nombre premier, alors le groupe multiplicatif est cyclique d'ordre p - 1. Dans le cas contraire, le groupe des unités est encore abélien et fini.

Il aide à la résolution d'équations diophantiennes comme le petit théorème de Fermat, ainsi que la généralisation d'Euler. Il est aussi utilisé dans la démonstration du théorème des deux carrés de Fermat par Richard Dedekind.

L'analyse harmonique sur les groupes abéliens finis possèdent aussi de nombreuses applications en arithmétique. Elle correspondent à la formalisation moderne de résultats démontrés par des mathématiciens comme Carl Friedrich Gauss ou Adrien-Marie Legendre . Le symbole de Legendre apparait maintenant comme un caractère d'un groupe cyclique, donc abélien et fini, à valeur dans {-1, 1}. Les sommes ou les périodes de Gauss s'exprime aussi à l'aide de caractères sur un groupe abélien fini, ce qui permet de les calculer. Cette approche est à la base d'une démonstration de la loi de réciprocité quadratique.

Johann Peter Gustav Lejeune Dirichlet s'intéresse à une conjecture de Gauss et Legendre : toute classe du groupe des unités de l'anneau Z/nZ contient une infinité de nombres premiers. Leonhard Euler propose bien une méthode, à travers le produit eulérien pour répondre, cependant les nombres premiers recherchés sont tous localisés dans une unique classe. Dirichlet utilise l'analyse harmonique pour démontrer ce théorème maintenant connu sous le nom de théorème de la progression arithmétique. Ses travaux sont fondateurs de la théorie analytique des nombres.

Théorie de Galois

Carl Friedrich Gauss
Construction de l'Heptadécagone

Les groupes abéliens finis ont un rôle particulier dans la théorie de Galois. Une conséquence du théorème d'Abel-Ruffini est que tout polynôme ayant un groupe de Galois abélien est résoluble par radicaux. La réciproque est un peu plus complexe, le groupe ne doit pas être nécessairement abélien mais résoluble. Le corps de décomposition d'un tel polynôme est une extension abélienne, c'est-à-dire une extension dont le groupe de Galois est abélien. Ce résultat rend donc les extensions abéliennes et leur groupe particulièrement intéressant. C'est la raison pour laquelle les mathématiciens du XIXe siècle ont cherché à démontrer le théorème de Kronecker-Weber avec tant d'assiduité.

Bien avant les découvertes de Galois Kronecker et Weber, Gauss avait utilisé un cas particulier : l'équation cyclotomique d'indice 17 pour trouver une méthode de construction à la règle et au compas de l'heptadécagone, c'est-à-dire du polygone régulier à 17 côtés. Le fait que le groupe de Galois du polynôme soit abélien est un élément essentiel de la méthode.

Corps fini

Un corps fini Fd est construit sur deux structures de groupes différentes celle additive (Fd, + ) qui est un produit d'un même groupe cyclique d'ordre un nombre premier et (Fd*, . ) qui est un groupe cyclique.

Théorie de l'information

Les CD utilisent un code de Reed-Solomon

Au XXe siècle, les groupes abéliens finis prennent une importance particulière grâce à la naissance de la théorie de l'information. Ils sont utilisés à la fois pour la cryptologie et les codes correcteurs.

En cryptologie, les groupes cycliques à la base de nombreux algorithmes. L'arithmétique modulaire permet, par exemple, d'obtenir des tests de primalité comme celui de Fermat, ou de Miller-Rabin. L'utilisation des groupes abéliens finis ne s'arrête pas là. Une structure essentielle est celle d'un espace vectoriel de cardinal fini, donc sur un corps fini et de dimension fini. Elle correspond à un groupe abélien fini et permet de définir une analyse harmonique particulière. Si le corps contient deux éléments, les fonctions de l'espace vectoriel dans le corps des nombres complexes prend le nom de fonction booléenne et la transformée de Fourier celui de transformée de Walsh. La cryptologie utilise largement les fonctions booléennes et la transformée de Walsh, par exemple pour l'étude des boîtes-S.

La théorie des codes correcteurs et particulièrement celle des codes linéaires n'est pas en reste. Elle utilise, par exemple, l'analyse harmonique sur les espaces vectoriels finis quelconques pour l'analyse d'un code dual à travers l'identité de Mac Williams. Le code utilisé pour les disques compacts est de type Reed-Solomon, il utilise un espace vectoriel sur un corps à 256 éléments, une structure fondée sur de multiples groupes abéliens finis.

Page générée en 0.216 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise