En mathématiques, un polyèdre est chiral s'il n'est pas superposable à son image dans un miroir. Un objet chiral et son image miroir sont dits être énantiomorphes. Le mot chiralité est dérivé du grec χειρ (cheir), la main, l'objet chiral le plus familier; le mot énantiomorphe semble être du grec εναντιος (enantios) 'opposé' et μορφη (morphe) 'forme'. Une figure non-chirale est appelée achirale. Si un polyèdre est chiral, il possède deux formes énantiomorphes : une lévogyre (« qui tourne à gauche », en latin laevus : gauche) et une dextrogyre (« qui tourne à droite », en latin dexter : droit), comme les deux cubes adoucis ci-dessous.
![]() | ![]() |
La chiralité peut être comparée à un simple problème de gants. Tous les enfants ont déjà été confrontés à un problème de chiralité en mettant la main droite dans le gant gauche et inversement. Un gant est un objet chiral car il n'est pas superposable à son image dans un miroir. Tout comme les pieds.
La distribution d'éléments différents dans l'espace, par exemple autour d'un point, peut conduire à des situations non identiques, donc des objets différents. Ainsi les dés à jouer sont des objets chiraux : la règle de construction veut que la somme des faces opposées soit égale à sept. Posons le six sur la face supérieure et par conséquent le un sur la face inférieure, puis le cinq devant donc le deux derrière. Il reste deux façons non équivalentes de terminer : le quatre à gauche et le trois à droite, ou inversement. On obtient deux formes énantiomorphes images l'un de l'autre dans le miroir.
L’hélice (et par extension les cordes/ficelles tournées, pas de vis, tire-bouchons, poignées de porte, etc) et le ruban de Möbius, de même que les tétrominos de forme S et Z du jeu vidéo populaire Tetris, montrent aussi la chiralité, bien que ces derniers soient seulement en deux dimensions.
Beaucoup d’autres objets familiers montrent la même symétrie chirale du corps humain (ou énantiomorphe) — gants, verres, chaussures, jambes d'une paire de bas, ciseaux, guitare, etc. — Une notion de chiralité similaire est considérée en théorie des nœuds, comme expliqué ci-dessous. Ou encore en biochimie pour la conformation et la réplication des protéines et pour expliquer le comportement pathogène et difficile à traiter de certains virions ou de maladies auto-immunes, et en physique subnucléaire pour les phénomènes de spin.
Une figure est achirale si et seulement si son groupe de symétrie contient au moins une isométrie de renversement d'orientation. (En géométrie euclidienne, toute isométrie peut être écrite comme
En trois dimensions, chaque figure qui possède un plan de symétrie ou un centre de symétrie est nécessairement achirale :
Notes:
En deux dimensions, chaque figure qui possède un axe de symétrie est achirale, et il peut être montré que chaque figure achirale bornée doit avoir un axe de symétrie. (Un axe de symétrie d'une figure F est une droite L, tel que F est invariante par l'application
Considérons le motif suivant :
< < < < < < < < < < < < < < < < < < < < |
Cette figure est chirale, elle n’est pas identique à son image miroir suivant un axe ou l’autre :
< < < < < < < < < < < < < < < < < < < < | > > > > > > > > > > > > > > > > > > > > |
Mais, si on prolonge le motif dans deux directions vers l'infini, on récupère une figure achirale (non-bornée) qui ne possède pas d'axe de symétrie. Son groupe de symétrie est un groupe de frise engendré par une anti-translation.
Un nœud est appelé achiral (ou amphichiral) s’il peut être déformé continument en son image miroir, autrement, il est appelé chiral. Par exemple, le non-nœud et le nœud de Listing sont achiraux, alors que le nœud de trèfle est chiral.