Composé organique volatil - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Perturbateurs / Interférents

Plusieurs composés présents dans l’air peuvent venir influencer la qualité de l’extraction et d’isolation des COV et avoir un effet sur l’analyse effectuée par la suite. La présence de particules et de poussières adsorbe les COV et change ainsi leurs propriétés physico-chimiques. L’eau est également un interférent, car sa condensation entraîne les produits polaires. D’autres facteurs comme la température (rayon infrarouge), l’ensoleillement (rayon ultraviolet) et les oxydants atmosphériques tels que l’ozone (O), les nitrites (NO) et les radicaux hydroxyles (OH•) ont un effet sur l’absorption et l’adsorption des COV.

La démarche analytique

Un hygiéniste industriel, attaché à une Unité de médecine dite (FDPMU-7 : Forward Deployed Preventive Medicine Unit Seven ) prépare une formation à l'utilisation d'un matériel de détection de composés organiques volatils dans les sols, l'eau ou l'air afin d'y détecter d'éventuels toxiques chimiques, radiologiques ou agents biologiques. ; Norfolk, Virginie (Juin 24, 2006)

Lieu de prélèvement Le prélèvement de l’échantillon à analyser s’avère être différent selon le lieu, le mode, la durée, la fréquence et les conditions atmosphériques et climatiques. Toutes ces conditions auront une influence sur la fiabilité des résultats. Il faut donc prendre conscience de ces effets sur l’échantillon pris.

Le prélèvement à l’émission possède deux critères importants, soit la température et le taux d’humidité présent dans l’air. Puis, les paramètres physiques du lieu et de l’espace secondent, car l’accumulation sur une longue durée peut s’effectuer. Il est également possible de comparer deux sources d’émission du point de vue cinétique. Certains appareils d’échantillonnage tiennent compte du débit, de la température et de l’humidité, et sont enregistrées. Un prélèvement dans l’environnement est généralement plus faible qu’à l’émission et nécessite une étape de concentration importante afin de réduire le volume total. Cependant, une distinction s’avère entre l’environnement urbain et rural. Les paramètres de mesure sont différents (largeur des artères principales, emplacement des espaces verts et grandeurs, quantité de radiation solaire, etc.). Les COV contenus dans le milieu urbain représentent les activités anthropiques, le transport et les rejets industriels. Les polluants retrouvés dans le milieu rural sont plus de nature agricole, tels que les pesticides, l’atrazine ou les composés agissant sur les végétaux, SO et O. Lors de prélèvement en milieu intérieur, il est important de tenir compte de l’hétérogénéité du milieu pouvant être expliqué par la formation de gradients verticaux. La concentration en COV dépend de l’activité des espaces fermés, mais également du débit de renouvellement de l’air. Il faut donc s’assurer que les valeurs limites d’exposition ne sont pas dépassées.

Types de prélèvement Différents types de prélèvement existent de nos jours afin de diminuer les erreurs d’échantillonnage, mais également l’introduction d’impuretés. On distingue deux modes de prélèvement : avec ou sans concentration.

Le prélèvement sans concentration peut se faire de différentes façons. Des sacs de plastiques faits de polymère fluoré, tels le Teflon, le Mylar, ou d’autres comme le polyéthylène possèdent une légèreté, une résistance et une étanchéité nécessaires à l’échantillonnage. Le sac est mis en dépression dans un caisson métallique, puis l’air est aspiré dans ce dernier. Il est réutilisable après lavage à l’air et en vérifiant l’absence de résidu. Un blanc d’analyse confirme un bon lavage. Ce mode nécessite l’apport d’un sac témoin, rempli d’air pur venant du laboratoire et suit le même trajet afin de déceler la contamination possible que le sac échantillonneur subit. Des ampoules de verre peuvent également être utilisées. Elles possèdent un volume entre 250 ml et 3 l, mais sont limitées dans leur domaine d’application par leur fragilité. Le remplissage s’effectue soit par circulation des gaz à l’intérieur, soit par aspiration à l’aide d’une pompe en aval ou par dépression, et la fermeture des deux robinets au même moment piège les gaz. Une purge de plus de dix fois le volume de l’ampoule est nécessaire. Des contenants métalliques, en acier inoxydable à la paroi interne polie et ayant subi une désactivation électrostatique afin de la rendre inerte, permettent l’accumulation de gros volumes (1L à quelques dizaines) à de hautes pressions. Le conditionnement s’effectue en mettant sous vide le contenant, et l’introduction d’air pur et la mise sous vide en plusieurs cycles permettent son nettoyage.

Le prélèvement avec concentration s’effectue par absorption des gaz dans un liquide ou par adsorption des gaz sur une phase solide. Cependant, ces modes nécessitent une connaissance de la capacité de piégeage des COV par la solution ou par l’absorbat, et ce, à une température donnée et un débit contrôlé.

L’absorption des COV se fait par barbotage de l’échantillon gazeux dans une solution absorbante ayant une affinité pour ces composés. Il est également possible que ceux-ci précipitent. Le temps de contact pour l’absorption et la capacité d’évaporation du solvant sont les principaux facteurs d’une bonne absorption. Un des avantages de cette technique est la multiplication des analyses pour un même échantillon afin d’obtenir des résultats valides. Il est possible d’appréhender les COV selon leur famille en jouant avec l’affinité du solvant et un volume important de gaz peut être géré à fort débit. Cependant, la contamination lors de la préparation et la présence d’aérosols en solution rendant l’échantillon prélevé non représentatif sont deux inconvénients de la technique par absorption. Des exemples d’absorbants sont le bisulfite de sodium (NaHSO) 4%, l’acide chlorhydrique 0.1N et le dinitrophénylhydrazine (DNPH).

La capacité d’adsorption est fonction des pores d’adsorbant. Il en existe une grande diversité, telle que les cartouches qui nécessitent une préparation et un conditionnement préalable. Également, le charbon actif, étant un dérivé de la carbonisation et de l’activation de la noix de coco, possède une grande surface spécifique. Il est surtout utilisé pour les composés polaires et il adsorbe l’eau. La désorption de ce dernier est alors difficile, surtout si l’humidité dépasse 50%. Le carbone noir graphitisé (Carbopack©) ne retient pas les composés de faible masse molaire (tel que l’eau, le méthane, le monoxyde et le dioxyde de carbone, etc.) et la température de désorption efficace est aux alentours de 400 °C. Les tamis moléculaires (Carbosieve©) peuvent également être utilisé pour les petites molécules, de un à quatre atomes de carbone. D’autres types d’adsorbant composés de polymères sont également sur le marché, comme les trappes Tenax TA, et sont utilisés pour isoler les composés sensibles à l’hydrolyse. L’utilisation de plus d’un adsorbant peut être effectuée pour permettre la séparation des composés et de leur matrice. Ces exemples d’adsorbants sont qualifiés de dynamiques, car une pression doit être exercée à l’un des embouts pour faire pénétrer l’échantillon. L’adsorption statique est un second type. Un bon exemple est la micro-extraction sur phase solide (SPME, de l’anglais solid-phase micro-extraction). Il suffit de placer la fibre de silice du bout d’une aiguille dans l’échantillon et un équilibre se crée entre la phase gazeuse et la fibre de silice. L’aiguille est alors injectée dans un chromatographe en phase gazeuse et les limites de détection sont de l’ordre des particules par trillion (ppt).

Page générée en 0.157 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise