Espace réciproque - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Diffusion Rayleigh et principe de Huygens d'une onde

L'espace réciproque n'est utile que lorsque l'on considère une onde monochromatique. Cette onde est représentée par un vecteur \vec{k} unique.

Lorsque cette onde interagit avec une particule, elle peut être diffusée de manière élastique, par diffusion Rayleigh. De manière générale, pour une onde plane, on peut considérer en tout point une diffusion isotrope selon le principe de Huygens.

Les vecteurs diffusés \vec{k'} ont la même norme que \vec{k} mais une direction différente ; dans l'espace réciproque, leur extrémité forme une sphère de rayon k = ||\vec{k}|| . On ne s'intéresse qu'à une direction de diffusion à la fois, donc à un seul vecteur \vec{k'} .

Considérons un centre de diffusion situé en \vec{r} . Le déphasage spatial par rapport à l'origine est

\varphi_1 (\vec{r}) = -\vec{k} \cdot \vec{r} .

Si l'on s'intéresse au déphasage de l'onde diffusée en un point \vec{x} , le déphasage spatial entre la source \vec{r} et le point \vec{x} vaut

\varphi_2 (\vec{x}) = -\vec{k'} \cdot (\vec{x} - \vec{r})

puisque l'onde a parcouru un chemin \vec{x} - \vec{r} . Le déphasage total en \vec{x} vaut donc

\varphi_1 (\vec{r}) + \varphi_2 (\vec{x}) = -\vec{k} \cdot \vec{r} - \vec{k'} \cdot (\vec{x} - \vec{r})

si l'on pose

\vec{K} = \vec{k'} - \vec{k}

on obtient

\varphi_1 (\vec{r}) + \varphi_2 (\vec{x}) = \vec{K} \cdot \vec{r} - \vec{k'} \cdot \vec{x}

on a donc un terme qui ne dépend que de la position du centre de diffusion, et un autre terme qui ne dépend que du point final considéré, ce qui simplifie les calculs.

Le vecteur \vec{K} est appelé vecteur de diffraction.

Comme l'extrémité des vecteurs \vec{k'} est sur la sphère de centre O et de rayon k, l'extrémité des vecteurs \vec{K} = \vec{k'} - \vec{k} est sur la sphère dont le centre est la translation de l'origine par - \vec{k} , et de rayon k.

Association de réseaux

Association de deux réseaux sur un même plan

Il est possible d'associer les réseaux deux par deux ; les rayons doivent alors vérifier les deux conditions de diffraction, ce qui revient à prendre l'intersection des réseaux réciproques.

Diffraction par deux réseaux croisés : le réseau réciproque est une forêt de droites (en rouge)

Prenons par exemple deux réseaux plans d'orientation différente, c'est-à-dire un quadrillage du plan (\vec{e_2},\vec{e_3}) . Les réseaux réciproques sont des plans perpendiculaires aux vecteurs de translation des réseaux. L'intersection entre deux plans non parallèles est une droite ; le réseau réciproque de ce quadrillage est donc une « forêt » de droites parallèles à \vec{e_1} .

Pour un vecteur \vec{k} donné, les directions dans lesquelles se trouvent taches de diffraction sont déterminées par l'intersection entre la demi-sphère des \vec{K} et cette forêt de droites.

Appelons R1 le premier réseau ; le vecteur de translation entre deux traits, normal aux traits, est noté \vec{x_1} , le vecteur directeur unitaire des traits est noté \vec{u_1} et le réseau réciproque de plans est noté R*1. Le second réseau est noté R2, son vecteur de translation est \vec{x_2} , son vecteur directeur unitaire est est \vec{u_2} et le réseau réciproque est R*2. On note \vec{u_3} = \pm \vec{e_1}  ; le signe est choisi en fonction de l'orientation de \vec{u_1} et de \vec{u_2} afin que le trièdre (\vec{u_1},\vec{u_2},\vec{u_3}) soit direct ; on note que cette famille forme une base.

Les plans de R*1 sont perpendiculaires à \vec{x_1} et sont espacés de 2π/||x'1||, ceux de R*2 sont perpendiculaires à \vec{x_2} et sont espacés de 2π/||x'1||. Si l'on définit une nouvelle base (\vec{e_1^*},\vec{e_2^*},\vec{e_1})

\vec{e_2^*} = \frac{2 \pi}{||\vec{x_1}||^2} \cdot \vec{x_1}
\vec{e_1^*} = \frac{2 \pi}{||\vec{x_2}||^2} \cdot \vec{x_2}

(l'inversion des indices est purement conventionnelle et est expliquée ci-après), alors dans cette base, les plans de R*2 ont pour équation

Kx = a, a étant un nombre entier

les plans de R*1 ont pour équation

Ky = b, b étant un nombre entier

et donc les droites représentant les conditions de diffraction ont pour équation

\left\{\begin{matrix} K_x = a \\ K_y = b \end{matrix}\right.

Dans la pratique, on se réfère plutôt aux vecteurs directeurs des traits des réseaux, et on définit

\vec{e_1^*} = \frac{2 \pi}{||\vec{x_1}||} \cdot \frac{1}{||\vec{u_2} \wedge \vec{u_3}||} \cdot \vec{u_2} \wedge \vec{u_3}
\vec{e_2^*} = \frac{2 \pi}{||\vec{x_2}||} \cdot \frac{1}{||\vec{u_3} \wedge \vec{u_1}||} \cdot \vec{u_3} \wedge \vec{u_1}
\vec{e_3^*} = \frac{1}{||\vec{u_1} \wedge \vec{u_2}||} \cdot \vec{u_1} \wedge \vec{u_2}

le vecteur \vec{e_3^*} n'a pas d'utilité pratique ici mais permet de définir de manière systématique une nouvelle base. L'inversion des indices est justifiée ici par une construction systématique de vecteurs de la base (permutation circulaire des indices).

Maintenant, considérons que \vec{u_1} joint deux intersections de R1 et de R2, idem pour \vec{u_2} . Soit V le volume du parallélépipède formé par \vec{u_1} , \vec{u_2} et \vec{u_3} . On a :

V = (\vec{u_1} \wedge \vec{u_2}) \cdot \vec{u_3} = (\vec{u_3} \wedge \vec{u_1}) \cdot \vec{u_2} = (\vec{u_2} \wedge \vec{u_3}) \cdot \vec{u_1}

on a alors

\vec{e_1^*} = \frac{2 \pi}{V} \cdot \vec{u_2} \wedge \vec{u_3}
\vec{e_2^*} = \frac{2 \pi}{V} \cdot \vec{u_3} \wedge \vec{u_1}
\vec{e_3^*} = \frac{2 \pi}{V} \cdot \vec{u_1} \wedge \vec{u_2}

Cette base (\vec{e_1^*},\vec{e_2^*},\vec{e_3^*}) est appelée base réciproque. Elle est caractéristique des réseaux.

Réseaux sur des plans parallèles

La superposition de réseaux plans est équivalente à un réseau de fils à trois dimensions, ou encore à un réseau de points.

On peut aussi prendre des plans parallèles pourtant toutes un réseau identique, par exemple des plaques transparentes avec un réseau de traits réfléchissants (argenté). On choisit de prendre les plans parallèles à \vec{e_1} , et les traites du réseau perpendiculaires à \vec{e_2} .

Le réseau réciproque de ce montage est alors l'intersection entre les plans de l'espace réciproque, perpendiculaires à \vec{e_1} , générés par la succession de plans réfléchissants, et les plans réciproques du réseau plan, perpendiculaires à \vec{e_2} . Le réseau réciproque de ce montage est donc une série de droites parallèles à \vec{e_3} .

On peut enfin envisager une succession de plans parallèles portant tous un quadrillage identique. Le réseau réciproque est l'intersection de trois réseaux de plans ; c'est donc un réseau de points. On voit que l'on obtient le même réseau de points dans l'espace réciproque pour plusieurs configurations dans l'espace réel, à partir du moment où les intersections des traits se trouvent au même endroit. Ce qui définit les directions dans lesquelles l'intensité est non nulle, ce sont les vecteurs \vec{e_1} , \vec{e_2} et \vec{e_3} définissant la maille élémentaire.

On peut définir comme précédemment les vecteurs \vec{e^*_1} , \vec{e^*_2} et \vec{e^*_3} de l'espace réciproque

où (i, j, k) est une permutation circulaire de (1, 2, 3). Les vecteurs de diffraction \vec{K} pour lesquels il y a diffraction vérifient

\vec{K} = a \cdot \vec{e_1^*} + b \cdot \vec{e_2^*} + c \cdot \vec{e_3^*}

a, b et c sont des entiers. Le réseau réciproque est donc un réseau de points, les vecteurs \vec{e^*_1} , \vec{e^*_2} et \vec{e^*_3} définissant une maille élémentaire de ce réseau réciproque.

Base réelle et base réciproque

D'après les propriétés du produit vectoriel, on a :

\vec{e_1^*} \cdot \vec{e_2} = \vec{e_1^*} \cdot \vec{e_3} = 0 , soit \vec{e_1^*} \bot \vec{e_2} et \vec{e_1^*} \bot \vec{e_3}
\vec{e_2^*} \cdot \vec{e_3} = \vec{e_2^*} \cdot \vec{e_1} = 0 , soit \vec{e_2^*} \bot \vec{e_3} et \vec{e_2^*} \bot \vec{e_1}
\vec{e_3^*} \cdot \vec{e_1} = \vec{e_3^*} \cdot \vec{e_2} = 0 , soit \vec{e_3^*} \bot \vec{e_1} et

Par ailleurs, si (i, j, k) est une permutation circulaire de (1, 2, 3), on a :

\vec{e_i} \cdot \vec{e_i^*} = \frac{2\pi}{V} \cdot (\vec{e_i}\cdot \vec{e_j} \wedge \vec{e_k}) = 2\pi
Page générée en 0.156 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise