Ceci est un glossaire de quelques termes utilisés en topologie.
Ce glossaire est divisé en deux parties. La première traite des concepts généraux, et la seconde liste différents types d'espaces topologiques. Dans ce glossaire, tous les espaces sont supposés topologiques.
Généralités
A
Accessible : voir l' T1.
Adhérence
L'adhérence ou fermeture d'une partie d'un est le plus petit contenant celle-ci. Un point est dit adhérent à une partie s'il appartient à son adhérence.
Voir aussi Valeur d'adhérence.
B
Base ou base d'ouverts
Une base d'un est un ensemble d' dont les réunions sont tous les ouverts de la . En particulier, une base d'ouverts est une base de voisinages.
Un espace est dit à base dénombrable s'il admet une base d'ouverts dénombrable.
Base de voisinages : voir .
Boule
Dans un , la boule ouverte (respectivement fermée) de centre x et de rayon r (réel strictement positif) est l'ensemble des points situés à une de x strictement inférieure (respectivement inférieure ou égale) à r.
Dans un espace vectoriel normé, la boule unité (ouverte ou fermée) est la boule (ouverte ou fermée) de centre 0 et de rayon 1.
C
Cauchy : voir .
Compact : voir les .
Complet
Un est dit complet si toute est .
Complètement de Hausdorff : voir l' T2½.
Complètement normal : voir l' T5.
Complètement régulier : voir l' T3½.
Composante connexe
La composante connexe d'un point est la plus grande partie de l'espace contenant ce point. C'est l'union de toutes les parties connexes contenant ce point.
Connexe, connexe par arcs : voir les notions de .
Continu
Une application entre espaces topologiques est dite continue lorsque l'image réciproque de chaque est un ouvert.
Contractile : voir les notions de .
Convergent
Une suite dans un espace est dite convergente s'il existe un point (appelé limite de la suite) dont chaque contient tous les termes de la suite à partir d'un certain rang.
D
Dense
Une partie dense d'un est une partie dont l' est l'espace tout entier.
Dérivé
L'ensemble dérivéP' d'un partie P d'un est l'ensemble de ses .
Discontinu
Une application entre est dite discontinue si elle n'est pas continue.
Voir aussi .
Discret
Un est dit discret si toutes ses parties sont des . En particulier, il est .
Distance
Une distance sur un ensemble E est une application
satisfaisant les propriétés suivantes :
la symétrie : pour tout couple (x, y) d'éléments de E, d(x,y) = d(y,x) ;
la séparation : pour tout couple (x, y) d'éléments de E, d(x,y) = 0 si et seulement si x = y ;
l'inégalité triangulaire : pour tout triplet (x, y, z) d'éléments de E,
.
Certains espaces vectoriels topologiques sont aussi dits de Fréchet.
Espace de Hausdorff : voir l' T2.
Espace de Kolmogorov : voir l' T0.
Espace de Tychonoff : voir l' T3½.
Espace métrique
Un espace métrique est un couple (E,d), où E est un ensemble, et d une sur E. Voir aussi .
Espace polonais
Un espace polonais est un espace et par une pour laquelle il est .
Espace topologique
Un espace topologique est un ensemble E muni d'une .
F
Faiblement normal : voir les .
Fermé
Une partie d'un est dite fermée lorsque son complémentaire est un . L'ensemble vide et l'espace sont donc des fermés. L'union de deux fermés est un fermé et l'intersection d'une famille quelconque de fermés est un fermé.
En géométrie, une courbe est dite fermée lorsqu'elle est périodique.
Fermeture : voir .
Filtre : Un filtre sur un ensemble E est un ensemble non vide de parties non vides de E qui est stable par sur-parties et intersections finies. Dans un espace topologique, les voisinages d'un point forment un filtre.
Fin
Une est plus fine qu'une autre sur le même ensemble si tout pour la deuxième est ouvert pour la première.
Fonctionnellement séparés
Deux parties A et B d'un X sont dites fonctionnellement séparées lorsqu'il existe une fonction f : X → [0,1] telle que f|A=0 et f|B = 1.
La frontière d'une partie d'un est le complémentaire de son dans son , autrement dit l'ensemble des points qui sont adhérents à la fois à cette partie et à son complémentaire. C'est un .
Fσ : Une partie d'un espace topologique est un Fσ si c'est une réunion dénombrables de fermés.
G
Gδ : Une partie d'un espace topologique est un Gδ si c'est une intersection dénombrables d'ouverts.
Grossière : voir .
H
Hausdorff : : voir l' T2 ou Séparé.
Homéomorphisme
Un homéomorphisme entre deux espaces est une bijection à réciproque continue. Deux espaces entre lesquels il existe un homéomorphisme sont dits homéomorphes.
Homogène
Un espace est dit homogène si le groupe des automorphismes agit transitivement, autrement dit si pour tout couple de points il existe un homéomorphisme de l'espace sur lui-même qui envoie le premier point sur le deuxième. Tous les groupes topologiques, en particulier les espaces vectoriels topologiques, sont des espaces homogènes.
Homotopie
Une homotopie entre deux applications
est une application continue
telle que
. Les applications f et g sont alors dites homotopes.
I
Induite : voir .
Intérieur
L'intérieur d'une partie d'un est la réunion de tous les contenus dans cette partie. C'est donc le plus grand ouvert contenu dans cette partie, ou le complémentaire de l' de son complémentaire. Un point est intérieur à une partie si et seulement si cette partie est un du point.
Localement connexe ou localement connexe par arcs : voir les notions de .
Localement fini
Une famille de parties d'un est dite localement finie lorsque chaque point possède un qui ne rencontre qu'un nombre fini d'éléments de la famille. Une famille dénombrablement localement finie est une union dénombrable de familles localement finies.
Localement métrisable
Un espace est dit localement métrisable lorsque chaque point admet un .
M
Maigre
Une partie d'un est dite maigre lorsqu'elle est contenue dans une réunion dénombrable de d' vide.
Métrique : voir .
Métrisable
Un espace est dit métrisable lorsqu'il peut être muni d'une dont les forment une . Un espace métrisable est nécessairement et . Voir les conditions de métrisabilité.
Moins fine : voir .
N
Normal : voir les .
O
Ouvert
Un ouvert est un élément d'une .
Un est dit ouvert lorsque tous ses éléments sont des ouverts.
Une application entre espaces topologiques est dite ouverte lorsque l'image de chaque ouvert est un ouvert.
P
Paracompact : voir les .
Parfait
Un ensemble parfait d'un est une partie sans .
Parfaitement normal : voir les .
Partition de l'unité
Une partition de l'unité sur un espace topologique est un ensemble de fonctions à valeurs dans [0,1] tel que chaque point possède un sur lequel seul un nombre fini de ces fonctions ne sont pas constamment nulles et la somme des restrictions de celles-ci est constante égale à 1.
Plus fine : voir .
Point d'accumulation
Si A est une partie d'un espace topologique, un point d'accumulation de A est un point x dont tout contient un point de A distinct de x. Autrement dit, un point x est un point d'accumulation de A si et seulement s'il est à A − {x}.
Point isolé
Dans un , un point isolé d'une partie A est un point x de A pour lequel il existe un voisinage qui ne rencontre A qu'au point x. Autrement dit, c'est un point de A qui n'est pas de A.
Polonais : voir .
Prébase
Une prébase d'une est un ensemble d' dont l'ensemble des intersections finies constitue une .
Produit : voir .
Q
Quasi-compact : voir les .
Quotient
Voir .
R
Raffinement
Un raffinement d'un recouvrement
est un recouvrement dont chaque élément est inclus dans un élément de
.
Rare
Une partie d'un est dite rare ou nulle part dense lorsque son est d' vide, c'est-à-dire lorsque le complémentaire de son adhérence est .
Recouvrement
Un recouvrement d'un est une famille de parties dont l'union est l'espace tout entier. Un recouvrement est dit ouvert lorsque tous ses éléments sont des ouverts.
Relativement compact
Une partie d'un est dite relativement compacte lorsque son est .
Régulier : voir l' T3.
S
Séparable
Un espace séparable est un espace qui admet une partie dénombrable.
Un espace n'est pas nécessairement séparable et réciproquement.
Séparant
Une famille d'applications entre deux espaces topologiques X et Y est dite séparante si tout couple de points distincts dans X a des images séparées dans Y par au moins l'une de ces applications.
L'espace X est alors nécessairement séparé.
Séparé : voir l' T2.
Simplement connexe : voir les notions de .
Sous-recouvrement
Un sous-recouvrement d'un K est une partie de K qui est aussi un recouvrement.
Système fondamental de voisinages
Un système fondamental de voisinages d'un point est un ensemble
de voisinages de ce point tel que tout autre voisinage de ce point contient un élément de
.
Suite de Cauchy
Dans un , une suite de Cauchy est une suite de points telle que pour tout réel strictement positif a il existe un rang de la suite à partir duquel la entre deux images quelconques de la suite est toujours inférieure à a.
T
T0, T1, T2, T2½, T3, T3½, T4, T5 : voir les .
Topologie
Une topologie sur un ensemble E est un ensemble T de parties de E tel que :
l'ensemble E lui-même et l'ensemble vide sont des éléments de T ;
la réunion de toute famille d'éléments de T est un élément de T ;
l'intersection de deux éléments de T est un élément de T.
Les éléments de T sont appelés les ouverts de cette topologie.
Topologie discrète
La topologie discrète sur un ensemble E est la topologie dont les ouverts sont toutes les parties de E. C'est la plus de toutes les topologies sur E.
Topologie engendrée
La topologie engendrée par un ensemble
de parties d'un ensemble est celle dont les sont les réunions quelconques d'intersections finies d'éléments de
. L'ensemble
constitue une de la topologie engendrée.
Topologie grossière
La topologie grossière sur un ensemble E est la dont les seuls sont l'ensemble vide et l'ensemble E. C'est la moins de toutes les topologies sur E.
Topologie induite
La topologie induite sur une partie A d'un E est l'ensemble des intersections de A avec les de E. C'est la topologie la moins fine sur A rendant continue l'injection canonique de A dans E.
Topologie moins fine
Soient T, T' deux topologies sur le même ensemble E. La topologie T est moins fine que la topologie T' si tout ouvert de T est ouvert de T'. Cela équivaut à la continuité de l'application identique de (E,T') dans (E,T).
Topologie plus fine
Soient T, T' deux topologies sur le même ensemble E. La topologie T est plus fine que la topologie T' si tout ouvert de T' est ouvert de T. Cela équivaut à la continuité de l'application identique de (E,T) dans (E,T').
Topologie produit
La topologie produit sur un produit quelconque d'
est la par les
où un nombre fini d'éléments Ui sont des ouverts des espaces topologiques correspondants et les autres sont les espaces Ei correspondants.
C'est la topologie la moins rendant toutes les projections
.
Topologie quotient
Si E est un espace topologique et
une relation d'équivalence sur E, la topologie quotient sur l'ensemble quotient
est l'ensemble des parties de
dont les préimages sont des de E. C'est la topologie la plus rendant la projection canonique, qui à tout élément de E associe sa classe d'équivalence..
Topologique : voir .
Totalement discontinu : voir les notions de .
Tychonoff : voir l' T3½ ou Complètement régulier.
U
Uniformisable : dont la topologie est induite par une structure d'espace uniforme ; voir l' T3½ ou Complètement régulier.
V
Valeur d'adhérence
Une valeur d'adhérence d'une suite de points d'un est un point dont tout contient une infinité de termes de la suite. Si tout point admet une base dénombrable de voisinages, une valeur d'adhérence est la limite d'une sous-suite.
Voisinage
Un voisinage d'une partie A d'un est un ensemble contenant un contenant lui-même A. En particulier, un voisinage ouvert de A est simplement un ouvert contenant A. Un voisinage d'un pointp est un voisinage du singleton {p}.