Dans un milieu transparent, homogène et isotrope, les ondes lumineuses se propagent en ligne droite. On définit l’indice de réfraction du milieu par le rapport
où v est la vitesse de la lumière dans le milieu, et c la célérité de la lumière dans le vide. La vitesse v de la lumière est forcément inférieure à c, et l’indice de réfraction n — qui est une caractéristique propre du milieu (la lentille, par exemple) considéré — est donc toujours supérieur à 1. Lorsque l’onde lumineuse rencontre un dioptre (surface séparant deux milieux homogènes d’indices différents), la lumière est réfractée, c’est-à-dire déviée, en suivant les lois de Snell-Descartes. Cette déviation ne s’observe qu’à la condition que la lentille se trouve dans un milieu d’indice différent. Par ailleurs, on observe que la vitesse de propagation de la lumière dans l’air est sensiblement égale à celle dans le vide ( notée c).
Un schéma d’optique est toujours réalisé en considérant un sens donné de propagation de la lumière : du fait du principe de retour inverse de la lumière, l’ensemble du schéma est renversé si on considère le sens de propagation opposé.
Si on considère une onde plane (les surfaces d’onde — ou surfaces équiphases — sont des plans perpendiculaires à la direction de propagation, c’est-à-dire que la direction de propagation est la même partout) qui arrive sur une lentille plan convexe perpendiculairement à sa face d’entrée, la partie de l’onde au bord de la lentille traversera moins de verre que celle au centre de la lentille : la surface équiphase va ainsi se déformer et devenir courbe. Si la lentille permet de la transformer en une onde parfaitement sphérique, elle convergera vers un point source situé derrière la lentille.
Le schéma ci-contre Lentille plan convexe convergente montre une telle lentille. Les traits rouges représentent les rayons lumineux, qui sont les directions de propagation de l’énergie lumineuse : dans le cas d’une onde plane, ces rayons sont parallèles entre eux. Ces rayons sont perpendiculaires à la face d’entrée de la lentille (les surfaces d’onde sont donc parallèles à cette face d’entrée) et ne sont pas déviés à sa traversée. Par contre, ils sont déviés lors de la traversée de la face de sortie, et convergent en aval de la lentille vers un point appelé point focal image.
Dans le cas de la lentille divergente (schéma Lentille plan concave divergente), la partie de l’onde au centre de la lentille traverse moins de verre que celle aux bords. L’onde en sortie est déformée en une onde sphérique qui semble provenir d’un point source situé en amont de la lentille. On peut de nouveau effectuer des constructions à partir des rayons lumineux, qui suivent les lois de Snell-Descartes : le point focal image se trouve en amont de la lentille.
Un champ magnétique ou électrique peut dévier des charges en mouvement.
Si l’on assimile le trajet d’une charge à un rayon, on peut alors considérer que l’on a une lentille si des faisceaux de charges parallèles convergent en un point. Selon la déviation, on peut avoir une lentille convergente ou divergente.
Une charge ponctuelle, par exemple un électron, est une onde (voir l’article Dualité onde-corpuscule), et suit donc les règles de propagation classiques des ondes.
On peut appliquer le même formalisme que pour les lentilles optiques, et notamment la notion de plan focal, distance focale et d’aberration.
Les lentilles électromagnétiques sont utilisées par exemple pour focaliser les faisceaux d’électrons dans les microscopes électroniques.