Matrice antisymétrique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, et plus précisément en algèbre linéaire, une matrice antisymétrique est une matrice carrée opposée à sa transposée.

Définition

Une matrice carrée A à coefficients dans un anneau quelconque est dite antisymétrique si sa transposée est égale à son opposée ; c'est-à-dire si elle satisfait à l'équation :

tA = -A

ou encore, en l'écrivant avec des coefficients sous la forme A = (ai,j), si :

pour tout i et j, ai,j = - aj,i

Propriétés

  • Une matrice A\in M_n(K) est antisymétrique si et seulement si la forme bilinéaire qu'elle représente est antisymétrique, c'est-à-dire si (en notant les éléments de Kn comme des matrices colonnes) :
\forall X,Y\in K^n,\ ^{\operatorname t}\!Y\ A\ X=-^{\operatorname t}\!X\ A\ Y.
  • Une propriété équivalente (K étant supposé de caractéristique différente de 2) est que cette forme soit alternée, c'est-à-dire :
  • Le déterminant d'une matrice antisymétrique de taille n est nul si n est impair (car égal à son produit par (-1)n), et est le carré du pfaffien si n est pair.
  • L'espace des matrices symétriques et celui des matrices antisymétriques sont supplémentaires dans l'espace des matrices carrées. En effet, toute matrice carrée se décompose de façon unique de la façon suivante :
 A = \frac{A+^{\operatorname t}\!A}2+\frac{A-^{\operatorname t}\!A}2 .
  • Lorsque le corps de coefficients est celui des réels, ces deux espaces sont même orthogonaux si on munit l'espace des matrices carrés du produit scalaire canonique dont une des expressions est justement :
 (A,B) \mapsto Tr(^{\operatorname t}\!A.B)
  • Les matrices antisymétriques de type (n,n) forment un espace vectoriel de dimension (n2 - n)/2. La base canonique est la famille \left(A_{ij}\right)_{1\leq i < j \leq n} de matrices Aij qui comportent un à la ième ligne et jème colonne et moins un à la jème ligne et ième colonne.
  • Dans le cas réel :

Cet espace vectoriel est l'espace tangent au groupe orthogonal O(n). Dans ce sens, nous pouvons assimiler les matrices antisymétriques à des « rotations infinitésimales ».

Toute matrice antisymétrique réelle est diagonalisable sur le corps des complexes et ses valeurs propres sont imaginaires pures. En fait, si A est antisymétrique réelle, iA est hermitienne, c'est-à-dire autoadjointe.

En fait, les matrices antisymétriques de type (n, n) forment une algèbre de Lie utilisant le crochet de Lie

[A,B] = AB - BA\,

et c'est l'algèbre de Lie associée au groupe de Lie O(n).

Une matrice G est orthogonale et a un déterminant égal à 1, c'est-à-dire est un élément de la composante connexe du groupe orthogonal où se trouve la matrice unité, si et seulement si il existe une matrice antisymétrique A telle que:

G=\exp(A)=\sum_{n=0}^\infty \frac{A^n}{n!}.
Page générée en 0.153 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise