Mécanique des milieux continus - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

La mécanique des milieux continus est le domaine de la mécanique qui s'intéresse à la déformation des solides et à l'écoulement des fluides — ce dernier point fait l'objet de l'article mécanique des fluides, nous nous intéresserons donc ici essentiellement à la déformation des solides.

Mécanique des milieux continus Déformation élastique ou Résistance des matériaux Élasticité
Plasticité Rhéologie
Mécanique des fluides Fluides non-newtoniens
Fluides newtoniens

Le milieu continu

Si l'on regarde la matière de « très près » (échelle nanoscopique), la matière est granulaire, faite de molecule. Mais à l'œil nu (donc en se plaçant à notre échelle), un objet solide semble continu, c'est-à-dire que ses propriétés semblent varier progressivement, sans à-coups.

L'hypothèse des milieux continus consiste à considérer des milieux dont les propriétés caractéristiques, c'est-à-dire celles qui nous intéressent — densité, élasticité, etc. — sont continues. Une telle hypothèse permet d'avoir recours aux outils mathématiques reposant sur les fonctions continues et/ou dérivables.

Des hypothèses supplémentaires peuvent éventuellement être faites ; ainsi un milieu continu peut être :

  • homogène : ses propriétés sont les mêmes en tout point ;
  • isotrope : ses propriétés ne dépendent pas du repère dans lequel elles sont observées ou mesurées.

De nombreux matériaux utilisés dans l'industrie sont à la fois homogènes et isotropes (métaux usinés ou bruts de fonderie). Cependant, de nombreux matériaux ne sont pas isotropes (tôles laminées, pièces forgées, pièces tréfilées…) ; par ailleurs, l'utilisation de plus en plus fréquentes des matériaux composites a amené à étudier les milieux qui ne sont ni homogènes (sandwiches), ni isotropes (fibres de verre, de carbone ou de kevlar maintenues dans une résine) mais pour lesquels l'hypothèse de continuité (tout au moins par morceaux) reste valable.

Descriptions des milieux continus

Pour décrire le milieu on se donne les outils suivants :

Représentation lagrangienne

En représentation lagrangienne, les fonctions décrivant les grandeurs dépendent des variables suivantes :

  • La particule considérée (ou sa position M0 à un temps de référence t0)
  • Le temps

Si X est un champ lagrangien, alors on a :

X = X(M0,t) = X(x0,y0,z0,t)

La représentation lagrangienne suit chaque particule. Le champ lagrangien donne la valeur de la grandeur considérée portée par la particule qui au temps t0 occupait le point M0.

Représentation eulérienne

En représentation eulérienne, les fonctions décrivant les grandeurs dépendent des variables suivantes :

  • Le point géométrique considéré
  • Le temps

Si X est un champ eulérien, alors on a :

X = X(M,t) = X(x,y,z,t)

Le champ eulérien donne la valeur de la grandeur considérée portée par la particule qui au temps t occupe le point M.

Utilisation des deux représentations

La représentation lagrangienne est souvent plus intuitive au départ, mais elle présente de nombreux défauts :

  • Un champ lagrangien est difficilement stationnaire
  • Il est parfois difficile de suivre une particule

La représentation eulérienne est peut-être moins intuitive, mais elle a un avantage majeur :

  • Simplicité de la description (par exemple d'un écoulement autour d'un solide)

En description eulérienne il y a cependant un inconvénient : pour appliquer les théorèmes de la mécanique, il faut considérer un système fermé, or le champ eulérien donne les grandeurs en un point géométrique (donc les particules en ce point changent au cours du temps) ce qui est un système ouvert. Il faut donc être capable d'exprimer les dérivées des grandeurs pour chaque particule en fonction du champ eulérien. Pour cela on peut utiliser la dérivée particulaire, ou la formulation sous forme conservative des différents théorèmes ce qui concerne les équations de Navier-Stokes.

Expression de la dérivée particulaire

Dans ce qui suit, \tfrac{\partial X}{\partial t} représente la dérivée en description eulérienne et \tfrac{\mathrm D X}{\mathrm Dt} la dérivée particulaire (en description lagrangienne).

Si X(\underline{M},t) est un champ scalaire :

\frac{\mathrm D X}{\mathrm Dt}=\frac{\partial X}{\partial t}.\frac{\mathrm dt}{\mathrm dt} + \frac{\partial X}{\partial \underline{M}}.\frac{\mathrm d\underline{M}}{\mathrm dt} = \frac{\partial X}{\partial t} + \underline{v}\cdot\underline{\operatorname{grad}}(X)

De même, si \underline{X} est un champ vectoriel, en développant :

\frac{\mathrm D \underline{X}}{\mathrm Dt}=\frac{\partial \underline{X}}{\partial t} +\underline{\underline{\operatorname{grad}}}(\underline{X})\cdot\underline{v}

On obtiendra le même type de formule pour la dérivée particulaire d'un champ représenté par un tenseur d'ordre quelconque.

La représentation lagrangienne est adaptée à la description des solides, tandis que la représentation eulérienne est adaptée à la description des fluides.

Page générée en 0.203 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise