Application exponentielle - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, et plus précisément en géométrie différentielle, l'application exponentielle généralise la fonction exponentielle usuelle à toutes les variétés différentielles munies d'une connexion affine.

Deux cas particuliers importants en sont l'application exponentielle allant d'une algèbre de Lie vers un groupe de Lie, et l'application exponentielle d'une variété munie d'une métrique riemannienne

Définition

Soit M une variété différentielle, et p un point de M. Si M est munie d'une connexion affine, on peut définir la notion de géodésique passant par p. Soit alors v ∈ TpM un vecteur tangent en p à la variété. Il existe une unique géodésique γv telle que γv(0) = p et de vecteur tangent initial γ′v(0) = v. L'application exponentielle correspondante est définie par expp(v) = γv(1). En général, cette application n'est définie que localement, c'est-à-dire qu'elle n'envoie qu'un petit voisinage de l'origine de TpM vers un voisinage de p dans la variété ; ceci vient de ce que son existence relève du théorème de Cauchy-Lipschitz, lequel est par nature local. On dit qu'une connexion affine est complète si l'application exponentielle est définie en tout point du fibré tangent.

Géométrie riemannienne

En géométrie riemannienne, une application exponentielle est une application allant d'un sous-espace d'un espace tangent TpM d'une variété riemannienne (ou pseudo-riemannienne) M vers M elle-même. La métrique (pseudo)riemanienne détermine une connexion affine canonique, et l'application exponentielle de la variété est donnée par l'application exponentielle de cette connexion.

Propriétés

Intuitivemment parlant, l'application exponentielle prend un vecteur tangent à la variété, et parcourt la géodésique issue de ce point et dans cette direction pendant une unité de temps. Comme v correspond au vecteur-vitesse sur la géodésique, la distance (riemannienne) réellement franchie en dépendra. Reparamétrant les géodésiques pour qu'elles soient parcourues à vitesse unitaire (paramétrage par la longueur de l'arc), on peut définir expp(v) = β(|v|), où β est la géodésique dans la direction de v. Quand v varie, on obtient, en appliquant expp, différents points de M qui sont équidistants (pour la métrique) du point de base p ; c'est peut-être une des façons les plus concrètes de voir que l'espace tangent est une sorte de "linéarisation" de la variété.

Le théorème de Hopf-Rinow affirme qu'il est possible de définir l'application exponentielle sur tout l'espace tangent si et seulement si la variété est complète en tant qu'espace métrique (ce qui justifie l'expression de variété géodésicalement complète pour une variété ayant une application exponentielle de ce type). En particulier, les variétés compactes sont géodésicalement complètes. Cependant, même si expp est définie sur tout l'espace tangent, ce ne sera pas en général un difféomorphisme global. Toutefois, sa différentielle à l'origine de l'espace tangent est l'application identité, et donc, d'après le théorème des fonctions implicites, on peut trouver un voisinage de l'origine de TpM dans lequel l'application exponentielle est un plongement (autrement dit, l'application exponentielle est un difféomorphisme local). Le rayon de la plus grande boule centrée en l'origine de TpM qui s'applique difféomorphicalement par expp s'appelle le rayon d'injectivité de M en p.

Une importante propriété de l'application exponentielle est le lemme de Gauss suivant (encore un autre lemme de Gauss): étant donné un vecteur tangent v dans le domaine de définition de expp, et un autre vecteur w basé à l'extrémité de v (ainsi w est en fait dans l'espace tangent de l'espace tangent Tv(TpM)) et orthogonal à v, il reste orthogonal à v lorsqu'il est poussé par l'application exponentielle. Cela signifie en particulier, que la sphère frontière d'une petite boule autour de l'origine de TpM est orthogonale aux géodésiques dans M déterminées par ces vecteurs (autrement dit, les géodésiques sont radiales). Ceci amène à la définition des coordonnées géodésiques normales sur une variété riemannienne.

L'application exponentielle est aussi un outil utile pour relier la définition abstraite de la courbure à sa représentation plus concrète due à Riemann lui-même, la courbure sectionnelle, que l'on peut intuitivement définir comme la courbure de Gauss d'une certaine surface (c'est-à-dire une coupe de la variété par une sous-variété de dimension 2) passant par le point p considéré. La courbure abstraite peut être alors définie précisément comme la courbure de Gauss d'une surface passant par p, déterminée par l'image par expp d'un sous-espace de dimension 2 de TpM.

Page générée en 0.145 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise