Octonion fendu - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, les octonions fendus sont une extension non-associative des quaternions (ou des quaternions fendus). Ils diffèrent des octonions par la signature de la forme quadratique : les octonions fendus ont une signature de fente (4,4) où les octonions ont une signature définie positive (8,0).

Définition

La construction de Cayley-Dickson

Les octonions et les octonions fendus peuvent être obtenus par la construction de Cayley-Dickson en définissant une multiplication sur les paires de quaternions. Nous introduisons une nouvelle unité imaginaire ℓ et nous écrivons une paire de quaternions (a, b) sous la forme a + ℓb. Le produit est défini par la règle suivante :

(a + \ell b)(c + \ell d) = (ac + \lambda d\bar b) + \ell(\bar a d + c b)

\lambda = \ell^2.

Si \lambda\, est choisi égal à - 1, nous obtenons les octonions. Si, à la place, il est choisi égal à + 1, nous obtenons les octonions fendus. On peut aussi obtenir les octonions fendus via un doublement de Cayley-Dickson des quaternions fendus. Ici, quel que soit le choix de \lambda\, (±1), cela donnera les octonions fendus. Voir aussi les nombres complexes fendus en général.

La table de multiplication

Une base pour les octonions fendus est donnée par l'ensemble {1, i, j, k, ℓ, ℓi, ℓj, ℓk}. Chaque octonion fendu x peut être écrit comme une combinaison linéaire des éléments de la base,

x = x_0 + x_1\,i + x_2\,j + x_3\,k + x_4\,\ell + x_5\,\ell i + x_6\,\ell j + x_7\,\ell k,

avec des coefficients réels xa. Par linéarité, la multiplication des octonions fendus est complètement déterminée par la table de multiplication suivante :

1\, i\, j\, k\, \ell\, \ell i\, \ell j\, \ell k\,
i\, -1\, k\, -j\, -\ell i\, \ell\, -\ell k\, \ell j\,
j\, -k\, -1\, i\, -\ell j\, \ell k\, \ell\, -\ell i\,
k\, j\, -i\, -1\, -\ell k\, -\ell j\, \ell i\, \ell\,
\ell\, \ell i\, \ell j\, \ell k\, 1\, i\, j\, k\,
\ell i\, -\ell\, -\ell k\, \ell j\, -i\, 1\, k\, -j\,
\ell j\, \ell k\, -\ell\, -\ell i\, -j\, -k\, 1\, i\,
\ell k\, -\ell j\, \ell i\, -\ell\, -k\, j\, -i\, 1\,

Le conjugué, la norme et l'inverse

Le conjugué d'un octonion fendu x est donné par

\bar x = x_0 - x_1\,i - x_2\,j - x_3\,k - x_4\,\ell - x_5\,\ell i - x_6\,\ell j - x_7\,\ell k

comme pour les octonions. La forme quadratique (ou norme carrée) sur x est donnée par

N(x) = \bar x x = (x_0^2 + x_1^2 + x_2^2 + x_3^2) - (x_4^2 + x_5^2 + x_6^2 + x_7^2)

Cette norme est la norme pseudo-euclidienne standard sur \mathbb{R}^{4,4}\, . En raison de la signature de fente, la norme N est isotropique, ce qui signifie qu'il existe des éléments x différents de zéro pour lesquels N(x) = 0. Un élément x possède un inverse (à deux faces) x^{-1}\, si et seulement si N(x) ≠ 0. Dans ce cas, l'inverse est donné par

x^{-1} = \frac{\bar x}{N(x)}\, .

Algèbre matricielle-vectorielle de Zorn

Puisque les octonions fendus ne sont pas associatifs, ils ne peuvent pas être représentés par les matrices ordinaires (la multiplication matricielle est toujours associative). Zorn a trouvé une manière de les représenter sous la forme de "matrices" contenant à la fois des scalaires et des vecteurs en utilisant une version modifiée de la multiplication matricielle. Plus précisément, définissons qu'une matrice-vecteur est une matrice 2 x 2 de la forme

\begin{bmatrix}a & \mathbf v\\ \mathbf w & b\end{bmatrix}

a et b sont des nombres réels et v et w des vecteurs dans \mathbb{R}^3\, . Définissons la multiplication de ces matrices par la règle suivante

\begin{bmatrix}a & \mathbf v\\ \mathbf w & b\end{bmatrix} \begin{bmatrix}a' & \mathbf v'\\ \mathbf w' & b'\end{bmatrix} = \begin{bmatrix}aa' + \mathbf v\cdot\mathbf w' & a\mathbf v' + b'\mathbf v + \mathbf w \times \mathbf w'\\ a'\mathbf w + b\mathbf w' - \mathbf v\times\mathbf v'  & bb' + \mathbf v'\cdot\mathbf w \end{bmatrix}

où . est le produit scalaire et x le produit vectoriel ordinaire de 3 vecteurs. Avec l'addition et la multiplication scalaire définie comme d'habitude dans l'ensemble de toutes les matrices de cette sorte forme une algèbre à huit dimensions non associative unitaire sur les réels, appelée algèbre matricielle-vectorielle de Zorn.

Définissons le "déterminant" d'un matrice vecteur par la règle

\det\begin{bmatrix}a & \mathbf v\\ \mathbf w & b\end{bmatrix} = ab - \mathbf v\cdot\mathbf w .

Ce déterminant est une forme quadratique de l'algèbre de Zorn qui satisfait la loi de composition :

\det(AB) = \det(A)\det(B)\, .

L'algèbre matricielle-vectorielle de Zorn est, en fait, isomorphe à l'algèbre des octonions fendus. Écrivons un octonion x sous la forme

x = (a + \mathbf a) + \ell(b + \mathbf b)\,

a et b sont des nombres réels, a et b sont des quaternions purs qui sont vus comme des vecteurs dans \mathbb{R}^3\, . L'isomorphisme des octonions fendus vers l'algèbre de Zorn est donné par

x\mapsto \phi(x) = \begin{bmatrix}a + b & \mathbf a + \mathbf b \\ -\mathbf a + \mathbf b & a - b\end{bmatrix}\, .

Cet isomorphisme préserve la norme puisque N(x) = \det(\phi(x))\, .

Page générée en 0.299 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise