La théorie BCS est une théorie complète de la supraconductivité qui fut proposée en 1957 par John Bardeen, Leon Neil Cooper, et John Robert Schrieffer. Elle explique la supraconductivité par la formation de paires d'électrons (paires de Cooper) sous l'effet d'une interaction attractive entre électrons résultant de l'échange de phonons. Pour leur travail, ces auteurs obtinrent le prix Nobel de physique en 1972.
Il est possible de comprendre l'origine de l'attraction entre les électrons grâce à un argument qualitatif simple. Dans un métal, les électrons chargés négativement exercent une attraction sur les ions positifs qui se trouvent dans leur voisinage. Ces ions étant beaucoup plus lourds que les électrons, ils ont une plus grande inertie. Pour cette raison, lorsqu'un électron est passé près d'un ensemble d'ions positifs, ces ions ne reviennent pas immédiatement à leur position d'équilibre d'origine. Il en résulte un excès de charges positives à l'endroit où cet électron est passé. Un second électron sentira donc une force attractive résultant de cet excès de charges positives. Bien évidemment, les électrons et les ions doivent être décrits par la mécanique quantique, en tenant compte de l'indiscernabilité des électrons, et cet argument qualitatif est justifié par des calculs plus rigoureux. Le traitement théorique complet utilise les méthodes de la seconde quantification, et se base sur le Hamiltonien de Frohlich:
où ck,σ est un opérateur d'annihilation pour un électron de spin σ, et de quasi-impulsion k, bq est l'opérateur d'annihilation d'un phonon de quasi-impulsion q,
Au moyen d'une transformation canonique, on peut éliminer l'interaction électron-phonon du Hamiltonien de Frohlich pour obtenir une interaction effective entre les électrons. Une approche alternative consiste à utiliser la théorie de perturbation au second ordre dans le couplage électron phonon. Dans cette approche, un électron émet un phonon virtuel qui est aussitôt absorbé par un autre électron. Ce processus est la version quantique de l'argument qualitatif semi-classique du début du paragraphe. On trouve un élément de matrice pour l'interaction entre les électrons de la forme:
Cet élément de matrice est en général positif, ce qui correspond à une interaction répulsive, mais pour
Leon N. Cooper a prédit en considérant deux électrons en présence d'une mer de Fermi inerte et possédant une interaction attractive faible, que quelle que soit la force de cette interaction ces deux particules formeraient un état lié, appelé paire de Cooper. Ce résultat n'est pas trivial, car il est connu en mécanique quantique, qu'en trois dimensions, pour deux particules isolées, une interaction attractive trop faible ne permet pas la formation d'états liés (voir Landau et Lifchitz t.3). La présence de la mer de Fermi, qui interdit aux deux particules d'occuper les niveaux d'énergie inférieure à l'énergie de Fermi est l'élément qui permet l'existence de l'état lié pour une interaction faible. L'énergie de cet état lié s'annule avec la force de l'attraction avec une singularité essentielle, ce qui indique que l'état lié ne peut pas s'obtenir par une théorie de perturbation dans l'interaction électron-électron.
Le calcul de Cooper est critiquable en ce sens qu'il ne considère que deux électrons et suppose que les autres électrons qui sont sous la surface de Fermi échappent à l'effet de l'interaction. La théorie BCS lève cette objection en traitant tous les électrons sur un pied d'égalité. Le Hamiltonien de la théorie BCS s'écrit en seconde quantification:
Bardeen, Cooper et Schrieffer ont introduit une fonction d'onde variationnelle pour décrire l'état fondamental de ce Hamiltonien de la forme:
Cette fonction d'onde variationnelle décrit la création de paires de Cooper par l'opérateur
La fonction d'onde de BCS présente une certaine analogie avec les fonctions d'onde d'états cohérents de l'oscillateur harmonique et plus généralement les fonctions d'onde d'états cohérents bosoniques. Cette analogie indique en particulier que dans l'état fondamental du Hamiltonien de BCS la quantité:
Une méthode plus simple a été introduite par Bogoliubov et Valatin pour étudier le Hamiltonien BCS. Elle se base sur l'introduction de nouvelles particules par la transformation de Bogoliubov. P. W. Anderson a aussi introduit une méthode utilisant des opérateurs de pseudospins. Enfin, il est possible de reformuler la théorie BCS à l'aide de fonctions de Green et de diagrammes de Feynman.