En pratique, pour un usage informatique d’un réseau Wi-Fi, il est nécessaire de disposer au minimum de deux équipements Wi-Fi, par exemple un ordinateur, et un routeur Wi-Fi. L’ordinateur doit être équipé d’une carte Wi-Fi, qui contient une antenne, et de pilotes qui permettent de faire fonctionner cette carte. Les types, nombres, débit et distances entre les équipements varient en fonction de détails techniques, dont certains sont précisés dans cet article.
Du code est disponible pour la plupart des adaptateurs depuis la fin 1998. Du code pour les puces Atheros, Prism, Harris/Intersil et Aironet (constructeur Wi-Fi du même nom) est principalement partagé par les 3 BSD. Darwin et Mac OS X, en dépit de leur chevauchement avec FreeBSD, ont leur propre et unique implémentation. Dans OpenBSD 3.7, d’autres pilotes pour des chipsets sans-fils sont disponibles, y compris RealTek RTL8180L, Ralink RT25x0, Atmel AT76C50x et Intel 2100/2200BG/2225BG/2915ABG. Ceci est dû, au moins en partie, à l’effort d’OpenBSD pour soutenir les pilotes open source pour les composants réseau sans fil. Il est possible que de tels pilotes puissent être implémentés par d’autres BSDs s’ils n’existent pas déjà. Le NdisWrapper est aussi disponible sous FreeBSD.
La norme 802.11 s’attache à définir les couches basses du modèle OSI pour une liaison sans fil utilisant des ondes électromagnétiques, c’est-à-dire :
La couche physique définit la modulation des ondes radioélectriques et les caractéristiques de la signalisation pour la transmission de données, tandis que la couche liaison de données définit l’interface entre le bus de la machine et la couche physique, notamment une méthode d’accès proche de celle utilisée dans le standard Ethernet et les règles de communication entre les différentes stations. La norme 802.11 propose donc en réalité trois couches (une couche physique appelée PHY et deux sous-couches relatives à la couche liaison de données du modèle OSI), définissant des modes de transmission alternatifs que l'on peut représenter de la manière suivante:
Couche Liaison de données | 802.2 (LLC) | |||
---|---|---|---|---|
802.8 (MAC) | ||||
Couche Physique (PHY) |
|
Il est possible d’utiliser n’importe quel protocole de transport sur un réseau 802.11 au même titre que sur un réseau ethernet.
Le mode infrastructure est un mode de fonctionnement qui permet de connecter les ordinateurs équipés d’une carte Wi-Fi entre eux via un ou plusieurs Point d’accès (PA) qui agissent comme des concentrateurs (exemple : répéteur ou commutateur en réseau Ethernet). Autrefois ce mode était essentiellement utilisé en entreprise. Dans ce cas la mise en place d’un tel réseau oblige de poser à intervalle régulier des bornes (PA) dans la zone qui doit être couverte par le réseau. Les bornes, ainsi que les machines, doivent être configurées avec le même nom de réseau (SSID = Service Set IDentifier) afin de pouvoir communiquer. L’avantage de ce mode, en entreprise, est de garantir un passage obligé par le PA, il est donc possible de vérifier qui accède au réseau. En revanche, le réseau ne peut pas s’agrandir, hormis en posant de nouvelles bornes. Actuellement les FAI, les boutiques spécialisées et les grandes surfaces fournissent aux particuliers des routeurs sans fil qui fonctionnent en mode Infrastructure, tout en étant très faciles à configurer.
Le mode « Ad-Hoc » est un mode de fonctionnement qui permet de connecter directement les ordinateurs équipés d’une carte Wi-Fi, sans utiliser un matériel tiers tel qu’un point d’accès (en anglais : Access Point [AP]). Ce mode est idéal pour interconnecter rapidement des machines entre elles sans matériel supplémentaire (exemple : échange de fichiers entre portables dans un train, dans la rue, au café…). La mise en place d’un tel réseau se borne à configurer les machines en mode ad hoc (au lieu du mode Infrastructure), la sélection d’un canal (fréquence), d’un nom de réseau (SSID) communs à tous et si nécessaire d'une clé de cryptage. L’avantage de ce mode est de s’affranchir de matériels tiers, c'est-à-dire de pouvoir fonctionner en l'absence de point d'accès. Des protocoles de routage dynamique (exemples : OLSR, AODV…) rendent envisageable l'utilisation de réseaux maillés autonomes dans lesquels la portée ne se limite pas à ses voisins (tous les participants jouent le rôle du routeur).
La norme IEEE 802.11 est en réalité la norme initiale offrant des débits de 1 ou 2 Mbit/s (Wi-Fi est un nom commercial, et c’est par abus de langage que l’on parle de « normes » Wi-Fi). Des révisions ont été apportées à la norme originale afin d’améliorer le débit (c’est le cas des normes 802.11a, 802.11b, 802.11g et 802.11n, appelées normes 802.11 physiques) ou de spécifier des détails de sécurité ou d’interopérabilité. Voici un tableau présentant les différentes révisions de la norme 802.11 et leur signification :
Norme | Nom | Description |
---|---|---|
802.11a | Wi-Fi 5 | La norme 802.11a (baptisée Wi-Fi 5) permet d’obtenir un haut débit (dans un rayon de 10 mètres : 54 Mbit/s théoriques, 27 Mbit/s réels). La norme 802.11a spécifie 52 canaux de sous-porteuses radio dans la bande de fréquences des 5 GHz (bande U-NII = Unlicensed '- National Information Infrastructure), huit combinaisons, non superposées sont utilisables pour le canal principal. |
802.11b | Wi-Fi | La norme 802.11b est la norme la plus répandue en base installée actuellement. Elle propose un débit théorique de 11 Mbit/s (6 Mbit/s réels) avec une portée pouvant aller jusqu’à 300 mètres (en théorie) dans un environnement dégagé. La plage de fréquences utilisée est la bande des 2,4 GHz (Bande ISM = Industrial Scientific Medical) avec, en France, 13 canaux radio disponibles dont 3 au maximum non superposés (1 - 6 - 11, 2 - 7 - 12, ...). |
802.11c | Pontage 802.11 vers 802.1d | La norme 802.11c n’a pas d’intérêt pour le grand public. Il s’agit uniquement d’une modification de la norme 802.1d afin de pouvoir établir un pont avec les trames 802.11 (niveau liaison de données). |
802.11d | Internationalisation | La norme 802.11d est un supplément à la norme 802.11 dont le but est de permettre une utilisation internationale des réseaux locaux 802.11. Elle consiste à permettre aux différents équipements d’échanger des informations sur les plages de fréquences et les puissances autorisées dans le pays d’origine du matériel. |
802.11e | Amélioration de la qualité de service | La norme 802.11e vise à donner des possibilités en matière de qualité de service au niveau de la couche liaison de données. Ainsi, cette norme a pour but de définir les besoins des différents paquets en termes de bande passante et de délai de transmission de manière à permettre, notamment, une meilleure transmission de la voix et de la vidéo. |
802.11f | Itinérance ((en)roaming) | La norme 802.11f est une recommandation à l’intention des vendeurs de points d’accès pour une meilleure interopérabilité des produits. Elle propose le protocole Inter-Access point roaming protocol permettant à un utilisateur itinérant de changer de point d’accès de façon transparente lors d’un déplacement, quelles que soient les marques des points d’accès présentes dans l’infrastructure réseau. Cette possibilité est appelée itinérance ((en)roaming). |
802.11g | La norme 802.11g est la plus répandue dans le commerce actuellement. Elle offre un haut débit (54 Mbit/s théoriques, 25 Mbit/s réels) sur la bande de fréquences des 2,4 GHz. La norme 802.11g a une compatibilité ascendante avec la norme 802.11b, ce qui signifie que des matériels conformes à la norme 802.11g peuvent fonctionner en 802.11b. Cette aptitude permet aux nouveaux équipements de proposer le 802.11g tout en restant compatibles avec les réseaux existants qui sont souvent encore en 802.11b. Le principe est le même que celui de la norme 802.11a puisqu'on utilise ici 52 canaux de sous-porteuses radio mais cette fois dans la bande de fréquences des 2,4 GHz. Ces sous-porteuses permettent une modulation OFDM autorisant de plus haut débit que les modulations classique BPSk, QPSK ou QAM utilisé par la norme 802.11g. Cette modulation OFDM étant interne à l'une des 14 bandes 20 MHz possibles, il est donc toujours possible d'utiliser au maximum 3 de ces canaux non superposés (1 - 6 - 11, 2 - 7 - 12, ...) et ce, par exemple, pour des réseaux différents. | |
802.11h | La norme 802.11h vise à rapprocher la norme 802.11 du standard Européen (Hiperlan 2, d’où le h de 802.11h) et être en conformité avec la réglementation européenne en matière de fréquences et d’économie d’énergie. | |
802.11i | La norme 802.11i a pour but d’améliorer la sécurité des transmissions (gestion et distribution des clés, chiffrement et authentification). Cette norme s’appuie sur l’AES (Advanced Encryption Standard) et propose un chiffrement des communications pour les transmissions utilisant les standards 802.11a, 802.11b et 802.11g. | |
802.11IR | La norme 802.11IR a été élaborée de manière à utiliser des signaux infra-rouges. Cette norme est désormais dépassée techniquement. | |
802.11j | La norme 802.11j est à la réglementation japonaise ce que le 802.11h est à la réglementation européenne. | |
802.11n | WWiSE (World-Wide Spectrum Efficiency) ou TGn Sync | La norme 802.11n est disponible depuis le 11 septembre 2009. Le débit théorique atteint les 300 Mbit/s (débit réel de 100 Mbit/s dans un rayon de 100 mètres) grâce aux technologies MIMO (Multiple-Input Multiple-Output) et OFDM (Orthogonal Frequency Division Multiplexing). En avril 2006, des périphériques à la norme 802.11n commencent à apparaître basés sur le Draft 1.0 (brouillon 1.0) ; le Draft 2.0 est sorti en mars 2007, les périphériques basés sur ce brouillon seraient compatibles avec la version finale du standard. Des équipements qualifiés de « pré-N » sont disponibles depuis 2006 : ce sont des équipements qui mettent en œuvre une technique MIMO d'une façon propriétaire, sans rapport avec la norme 802.11n. Le 802.11n a été conçu pour pouvoir utiliser les fréquences 2,4 GHz ou 5 GHz. Les premiers adaptateurs 802.11n actuellement disponibles sont généralement simple-bande à 2,4 GHz, mais des adaptateurs double-bande (2,4 GHz ou 5 GHz, au choix) ou même double-radio (2,4 GHz et 5 GHz simultanément) sont également disponibles. Le 802.11n saura combiner jusqu’à 8 canaux non superposés, ce qui permettra en théorie d'atteindre une capacité totale effective de presque un gigabit par seconde. |
802.11s | Réseau Mesh | La norme 802.11s est actuellement en cours d’élaboration. Le débit théorique atteint aujourd’hui 10 à 20 Mbit/s. Elle vise à implémenter la mobilité sur les réseaux de type Ad-Hoc. Tout point qui reçoit le signal est capable de le retransmettre. Elle constitue ainsi une toile au-dessus du réseau existant. Un des protocoles utilisé pour mettre en œuvre son routage est OLSR. |
Linksys, la division grand public de Cisco Systems, a développé la technologie SRX pour « Speed and Range Expansion » (« Vitesse et Portée Étendue »). Celle-ci superpose le signal de deux signaux 802.11g pour doubler le taux de transfert des données. Le taux maximum de transfert des données via un réseau sans fil SRX400 dépasse donc les capacités d’un réseau filaire Ethernet 10/100 que l’on trouve dans la plupart des réseaux.