Arithmétique des polynômes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Anneau factoriel

Dans ce paragraphe A désigne un anneau factoriel, c'est-à-dire aussi non nul, commutatif unitaire et intègre. L'article Construction de l'anneau des polynômes montre que A[X] est toujours commutatif unitaire et intègre, cependant il n'est euclidien que si A est un corps (cf l'article Division d'un polynôme).

Lemme de Gauss

Cette fois ci, le groupe des unités de A[X] est plus restreint, il ne contient que les polynômes constants dont la constante est inversible dans A. Ainsi dans Z[X], l'anneau des polynômes à coefficients entiers les deux seuls polynômes inversibles sont 1 et -1. Dans ce cas, un polynôme constant non nul n'est pas nécessairement irréductible et le polynôme 6 n'est plus irréductible car il est égal à 2x3. Pour cette raison, on dit qu'un polynôme est primitif lorsque ses coefficients sont premiers entre eux dans leur ensemble. Comme A est un anneau commutatif unitaire et intègre, il est possible de construire son corps des fractions K, de la même manière que l'on construit Q le corps des fractions des entiers naturels. Un polynôme P de A[X] peut aussi être considéré comme un polynôme à coefficients dans K.

On dispose d'une première propriété, appelée lemme de Gauss uniquement dans le cas où l'anneau est égal à Z, mais vraie dans tous les anneaux factoriels :

Lemme de Gauss — Un polynôme de A[X] est irréductible si, et seulement si, il est primitif et irréductible dans K[X].

Pour montrer qu'un polynôme est irréductible dans Z[X], il suffit de vérifier que ses différents coefficients ne comportent aucun facteur commun et qu'il est irréductible dans Q[X].

Les démonstrations sont proposées dans l'article Anneau factoriel.

Théorème

Une conséquence de ce lemme est le théorème :

Anneau factoriel — L'anneau A[X] est factoriel.

L'équivalent du théorème fondamental de l'arithmétique est encore valable, au même titre que le lemme d'Euclide, mais l'identité de Bézout n'est plus vraie et l'anneau des polynômes n'est pas principal. Pour s'en rendre compte, on peut, par exemple considérer l'idéal engendré par l'indéterminée X et a, un élément non inversible de l'anneau A, il n'est pas principal. En conséquence, il n'existe pas de polynômes N et M de A[X] tel que N.X + a.M soit égal au polynôme constant 1, même si a et X sont deux polynômes premiers entre eux. Comme l'anneau n'est pas principal, il ne peut exister de division euclidienne.

Les démonstrations sont proposées dans l'article détaillé.

Usages de l'arithmétique de A[X]

Ces propriétés permettent parfois d'étudier la décomposition en facteurs premiers dans Q[X]. C'est le cas pour l'étude du polynôme cyclotomique, le lemme de Gauss permet de montrer que les facteurs irréductibles sont à coefficients dans Z, il devient possible de quotienter Z, l'anneau des coefficients, par p.Zp est un nombre premier, et de conclure sur l'expression exacte des facteurs irréductibles des polynômes de la forme Xn - 1. Le lemme de Gauss peut être aussi utilisé pour démontrer le critère d'Eisenstein sur les polynômes à coefficients dans Z.

Une autre conséquence influe sur l'étude de la géométrie algébrique. Cette branche des mathématiques porte sur l'étude des variétés définies comme intersections des racines d'une famille (Pk) de polynômes en un nombre fini d'indéterminées sur un corps K. L'anneau K[X1, X2] est isomorphe à l'anneau de polynômes en une indéterminée à coefficients dans K[X1], qui est factoriel. Il est donc factoriel et une récurrence montre que K[X1, ..., Xn] l'est aussi.

Une variété algébrique peut encore être vue comme l'ensemble des points qui s'annulent sur l'idéal engendré la famille (Pk). Le caractère factoriel de l'anneau offre immédiatement des théorèmes sur les idéaux de l'anneau, offrant ainsi deux axes d'analyse, géométrique en étudiant la variété et algébrique en étudiant l'idéal. Le théorème de la base de Hilbert et le Nullstellensatz sont deux résultats géométriques sur les variétés qui découlent de l'étude de la structure des idéaux.

Page générée en 0.069 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise