Arithmétique des polynômes - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Usages de l'arithmétique de K[X]

Extension finie de R

Le corps des complexes C peut être vu comme un espace vectoriel de dimension 2, sur R. On peut se demander s'il existe d'autres corps commutatifs contenant R. Il existe par exemple le corps des fractions rationnelles à coefficients dans R. Mais, à la différence de C, vu comme un espace vectoriel sur R, le corps des fractions n'est pas de dimension finie. Un corps commutatif contenant R et espace vectoriel de dimension finie est dit une extension finie de R. L'arithmétique des polynômes à coefficients dans R permet d'établir le résultat suivant :

Extension finie de R — Il n'existe que deux extensions finies de R : R et C, à un isomorphisme près.

L'expression un isomorphisme près signifie que si L est une extension finie de R, alors soit L est égal à R soit L est une copie de C et il existe une bijection φ de C dans L tel que l'image de R soit R et que l'addition et la multiplication soit respectées par φ, autrement dit :

Ce qui signifie que φ(a) est une autre manière de noter a, mais que les opérations restent strictement les mêmes.

Équation algébrique

L'arithmétique modulaire sur les polynômes apporte la structure de base d'une des branches de la théorie des équations, dont l'unique objet est la résolution des équations polynômiale. Soit P un polynôme à coefficients dans un corps K de degré supérieur ou égal à 1, on recherche un corps L contenant les racines de P.

Corps de décomposition — Il existe un corps L, contenant K dimension finie et contenant toutes les racines de P.

La plus petite extension vérifiant cette propriété est appelé corps de décomposition du polynôme P. Ce corps est un des ingrédients utilisé dans le cadre de la théorie de Galois pour déterminer exactement quelle équation polynômiale est résoluble par radicaux (cf l'article Théorème d'Abel (algèbre)).

Corps fini

Les congruences sur les anneaux sont la méthode principale d'étude des corps finis. Pour l'illustrer, considérons un nombre premier p strictement supérieur à 2 et recherchons un corps fini à p2 éléments. On considère dans un premier temps le corps Fp à p éléments, isomorphe à Z/pZ. Dans ce corps, la fonction polynôme, qui à x associe x2, n'est pas injective car x et -x ont la même image. Une application d'un ensemble fini dans lui-même qui n'est pas injective n'est pas surjective, et il existe une valeur a de Fp tel que le polynôme Pa égal à X2 - a soit irréductible.

Les congruences des polynômes de Fp modulo Pa forment un corps car Pa est irréductible. Si χ représente la classe de X modulo Pa, comme toute congruence possède comme représentant un polynôme de degré inférieur ou égal à 1, tout élément du corps des congruences est de la forme a + b.χ, avec a et b élément de Fp. On obtient bien un corps à p2 éléments.

L'article détaillé montre qu'il n'existe pas d'autres corps à p2 éléments à un isomorphisme près. Cette méthode se généralise et permet de construire tous les corps finis.

Page générée en 0.111 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise