Les sources X comprennent : les amas de galaxies, les trous noirs dans les noyaux actifs de galaxies, les rémanents de supernovas, les étoiles ou les couples d'étoiles contenant une naine blanche (variables cataclysmiques et sources X ultrafaibles), étoiles à neutrons, trous noirs, binaires X.
Certains corps du système solaire émettent des rayons X, par fluorescence, ainsi la Lune, bien que ce soit principalement le rayonnement réfléchi du Soleil.
Une combinaison de toutes ces sources est à l'origine du fond diffus X , observable par son occultation par la Lune.
La matière accélérée lorsqu'elle tombe dans un trou noir émet des X (avant de passer l'horizon du trou noir). Cette matière forme un disque d'accrétion. Les disques d'accrétion autour d'une naine blanche ou d'une étoile à neutrons libèrent une énergie supplémentaire quand le gaz atteint la surface de l'astre à haute vitesse. Pour une étoile à neutron la matière peut aller à une vitesse ultrarelativiste.
Dans certains systèmes avec une naine blanche ou une étoile à neutrons, le champ magnétique peut être assez fort pour empêcher la formation du disque d'accrétion. Par friction le gaz devient très chaud et émet des rayons X. Le gaz perd son moment angulaire et des rayons supplémentaires sont générés quand la matière touche la surface.
L'intensité émise par un trou noir est variable en de très courts intervalles de temps. La variation en luminosité permet de déduire la taille du trou noir.
Les amas de galaxies sont une réunion de petites unités de matière : galaxies, gaz, matière noire. Celles-ci gagnent de l'énergie en tombant dans le puits de potentiel gravitationnel de l'amas. Les chocs en résultant chauffent ce gaz à une température entre 10 et 100 millions de Kelvins, en fonction de la taille de l'amas. Ce gaz émet dans le domaine X, avec es raies d'émission correspondant aux métaux (métal dans le sens astronomique : élément autre que l'hydrogène et l'hélium).
Les galaxies et la matière noire ne se heurtent pas et finissent par orbiter (voir théorème du viriel) autour du puits de potentiel de l'amas.
La plupart des détecteurs actuels utilisent des capteurs CCD. En lumière visible, un unique photon peut produire un unique électron dans le pixel, l'image est construite par la charge accumulée dans chaque pixel. Quand un photon X heurte le CCD, il crée des électrons proportionnellement à son énergie (des centaines de milliers). On a donc une mesure de cette énergie.
Un microcalorimètre détecte un photon à la fois. Ils sont utiles pour l'astronomie où, bien que la source soir très puissante, le flux atteignant la Terre est très faible.
C'est une amélioration des microcalorimètres. des métaux supraconducteurs sont maintenus près de leur température de changement d'état (la température où leur résistance devient nulle), généralement quelques Kelvin.