Cristallographie - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les bases

La matière solide est composée d'atomes, que l'on peut voir comme des boules élémentaires qui s'assemblent. Elles peuvent s'assembler de plusieurs manières : quelques boules s'assemblent pour former une molécule, c'est le cas des gaz, des liquides, des solides moléculaires, des polymères (caoutchoucs, plastiques, papiers, protéines...), ces matériaux comportent des milliards de molécules semblables. Les boules s'agencent de manière irrégulière, on a alors de la matière dite « amorphe » (ou « vitreuse »), comme par exemple le verre, ou encore elles s'entassent de manière ordonnée, c'est alors un cristal. Dans les cristaux non moléculaires, la structure est composé d'atomes ou d'ions qui forment un réseau tridimensionnel de polyèdres de coordination sans qu'aucune unité moléculaire n'existe : c'est le cas de la quasi totalité des minéraux et de la majorité des cristaux inorganiques.

La cristallogénèse

La cristallogénèse est la formation d'un cristal, soit en milieu naturel, soit de façon expérimentale.

Applications

On utilise les propriétés de diffraction des cristaux en physique, chimie, biologie, biochimie, médecine et en sciences de la terre.

Leur analyse donne des informations sur des substances cristallines organiques et inorganiques (distance entre atomes, agencement spatial des atomes, identification de phases cristallines, taille des cristallites).

Diffraction

Principe

Max von Laue eut l'idée d'irradier les cristaux avec des rayons X, car il pensait que le réseau cristallin ferait dévier le rayonnement de la même façon que la lumière est déviée dans certains minéraux transparents. L'expérience que des collègues réalisèrent sur un cristal de sulfate de cuivre lui permit de faire la démonstration de la structure périodique des empilements d'atomes dans les cristaux et de la nature ondulatoire du rayonnement X.

La détermination de la structure atomique d'un cristal s'effectue le plus souvent par diffraction des rayons X ou des neutrons, dont les longueurs d'onde sont de l'ordre des distances qui séparent les plans atomiques de la structure cristalline. Lorsque le cristal à étudier est irradié par un fin faisceau de rayons X, chacun des atomes du cristal diffuse une onde de faible amplitude, qui se propage dans toutes les directions. Les ondes issues des atomes interfèrent et donnent lieu à la diffraction, faisant apparaître sur le détecteur qui les reçoit des taches qui correspondent au maximum des ondes en phase ; les autres, en opposition de phase, s'annulent.

Réseau réciproque

Au niveau d'un écran situé à une distance des centres diffuseurs secondaires, on observera des figures de diffraction qui permettent de visualiser les perturbations créées par les interférences citées précédemment. Le réseau réciproque est l'image que l'on obtient à partir de la figure de diffraction.

Appareillage utilisé en cristallographie

Matériaux isotropes et anisotropes

En ce qui concerne les matériaux amorphes, les liquides et les gaz, on peut considérer que le milieu est isotrope. Exception tout de même, les propriétés physiques des cristaux liquides sont anisotropes. Cette complexité vient de l'arrangement tridimensionnel des molécules qui composent le liquide : leurs formes très anisotropes se répercutent sur la façon dont elles sont arrangées dans la phase liquide.

Les choses se compliquent lorsque l'on parle de cristaux : seuls les cristaux cubiques sont isotropes, tous les autres étant anisotropes.

Page générée en 0.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise