Harmonique sphérique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Harmoniques sphériques normalisées

Base orthonormale des harmoniques sphériques

Parmi les (2l + 1) fonctions, l'habitude a été prise de sélectionner une base orthomormale sur la sphère S2 munie de la mesure

\mathrm d\mu = \frac{1}{4\pi} \sin \theta \mathrm d\theta \mathrm d\phi ,

soit le produit scalaire (hermitien en fait) :

\langle f_1\mid f_2\rangle = \frac{1}{4\pi} \iint_{S^2} f_1^{*} f_2 \sin \theta \mathrm d\theta \mathrm d\phi

Les harmoniques sphériques sont les solutions de l'équation aux valeurs propres :

- \Delta Y_{l,m}(\theta, \varphi) = l(l+1) Y_{l,m}(\theta, \varphi)

où l'opérateur laplacien s'écrit en coordonnées sphériques sur la sphère de rayon unité, J2 :

\Delta f(\theta, \varphi) \stackrel{\rm def}{=} J^2 f = \frac{1}{\sin \theta } \frac{\partial ~}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta}\right) + \frac{1}{\sin^2 \theta } \frac{\partial^2 f}{\partial \varphi^2}

Elles sont fonctions propres de l'opérateur J_3 = -i \tfrac{\partial}{\partial \phi}  :

 J_3 Y_{l,m} = m \cdot Y_{l,m}

Celles-ci, une fois normées sur la sphère sont alors notées usuellement Y_{l,m}(\theta, \varphi) , où les angles (\theta, \varphi) sont les coordonnées sphériques sur la sphère de rayon unité, et l et m sont deux nombres entiers tels que :

  • 0 \le l
  •  - l \le m \le + l

Normalisation

Les harmoniques sphériques constituent une base orthonormale de fonctions propres de l'opérateur laplacien sur la sphère de rayon unité S2 au sens où :

Elles sont orthogonales pour le produit scalaire suivant :

\iint_{S_2} \mathrm d\Omega(\theta, \varphi) \overline{Y}_{l',m'}(\theta, \varphi) Y_{l,m}(\theta, \varphi) = \delta_{l, l'} \delta_{m, m'}

Dans cette formule, \mathrm d\Omega(\theta, \varphi) représente l'angle solide élémentaire :

\mathrm d\Omega(\theta, \varphi)= \sin \theta \mathrm d\theta \mathrm d\varphi

Toute fonction f(\theta, \varphi) suffisamment régulière admet un développement en série :

f(\theta, \varphi) = \sum_{l=0}^{+ \infty} \sum_{m=-l}^{+l} a_{l,m} Y_{l,m}(\theta, \varphi)

où les coefficients complexes al,m se calculent par :

a_{l,m} = \iint_{S_2} \mathrm d\Omega(\theta, \varphi) \overline{Y}_{l,m}(\theta, \varphi)  f(\theta, \varphi)

Expression des harmoniques sphériques normalisées

Les harmoniques sphériques généralisées sont définies sur la sphère S3. La normalisation des harmoniques sphériques conduit à l'expression finale :

Y_{l,m}(\theta, \varphi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_{l,|m|}(\cos \theta) \mathrm{e}^{i \, m \, \varphi}

Autres harmoniques

Harmoniques circulaires

Dans le plan, la décomposition s'écrit :

f(\theta) = \sum_{l = 0}^{+\infty} C_l \cdot Y_l (\theta)

Y0 est une fonction constante, la courbe représentatrice en coordonnées polaires r = Y0(θ) est donc un cercle de rayon r0.

Yl est une fonction invariante par une rotation d'un angle de 1 / (l + 1) tour, c'est-à-dire que

Y_l \left (\theta + \frac{2 \pi}{l+1}\right ) = Y_l (\theta)

on dit que Yl admet une symétrie d'ordre l + 1.

Harmoniques sphériques généralisées

Lorsque l'on considère l'orientation d'un objet dans l'espace, il faut faire appel à trois angles ; on utilise en général les angles d'Euler (ψ, θ, φ).

Considérons une fonction continue de l'orientation ƒ(ψ, θ, φ) ; comme précédemment, cette fonction peut être décomposée en harmoniques sphériques généralisées

f(\psi,\theta,\varphi) = \sum_{l = 0}^{+\infty} \sum_{m = -l}^{+l} \sum_{n = -l}^{+l} C_l^{mn} \cdot Y_l^{mn} (\psi,\theta,\varphi)

Clmn est une constante. La fonction Ylmn s'écrit :

Y_l^{mn}(\psi,\theta,\varphi) = e^{i m \varphi} \cdot P_l^{mn}( \cos \theta) \cdot e^{i n \psi}

Le polynôme Plmn est le polynôme de Legendre généralisé

P_l^{m n} (X) = \frac{(-1)^{l-m} \cdot i^{n-m}}{2^l \cdot (l-m)!}  \cdot \left [ \frac{(l-m)! (l+n)!}{(l+m)! (l-n)!} \right ]^{1/2} \cdot (1-X)^{-\frac{n-m}{2}} \cdot (1+X)^{-\frac{n+m}{2}} \cdot \frac{\partial^{l-n}}{\partial X^{l-n}} \left [ (1-X)^{l-m} (1+X)^{l+m} \right ]

Quand X décrit l'intervalle [ − 1;1], cette fonction Plmn est soit réelle, soit imaginaire pure. Y000(ψ, θ, φ) est la fonction isotrope (symétrie sphérique).

D'après la loi de composition des rotations, on a :

Y_l^{mn}(\psi_1 + \psi_2, \theta_1 + \theta_2, \varphi_1 + \varphi_2) = \sum_{s = -l}^{+l} Y_l^{ms}(\psi_1, \theta_1, \varphi_1) \cdot Y_l^{sn}(\psi_2, \theta_2, \varphi_2)

et en particulier

P_l^{mn}(\cos (\theta_1 + \theta_2)) = \sum_{s = -l}^{+l} P_l^{ms}(\cos \theta_1) \cdot P_l^{sn}(\cos \theta_2)

On a de manière générale :

P_l^{mn} = P_l^{nm} = P_l^{-m -n}

Par exemple pour l = 1 :

P_1^{mn}(\cos \theta)
m n
-1 0 +1
-1 \frac{1}{2} (1+\cos \theta) -\frac{i}{\sqrt{2}} \sin \theta \frac{1}{2} (\cos \theta - 1)
0 -\frac{i}{\sqrt{2}} \sin \theta cosθ -\frac{i}{\sqrt{2}} \sin \theta
1  \frac{1}{2} (\cos \theta - 1) -\frac{i}{\sqrt{2}} \sin \theta  \frac{1}{2} (1+\cos \theta)

Pour l = 2 :

P_2^{mn}(\cos \theta)
m n
-2 -1 0 +1 +2
-2 \frac{1}{4} (\cos \theta + 1)^2 -\frac{i}{2} \sin \theta (\cos \theta + 1) -\frac{1}{2}\sqrt{\frac{3}{2}} (1 - \cos^2 \theta) -\frac{i}{2} \sin \theta (\cos \theta - 1) \frac{1}{4} (\cos \theta - 1)^2
-1 -\frac{i}{2} \sin \theta (\cos \theta + 1) \frac{1}{2}(2 \cos^2 \theta + \cos \theta -1) -\sqrt{\frac{3}{2}} i \sin \theta \cos \theta \frac{1}{2}(2 \cos^2 \theta - \cos \theta -1) -\frac{i}{2} \sin \theta (\cos \theta - 1)
0 -\frac{1}{2}\sqrt{\frac{3}{2}} (1 - \cos^2 \theta) -\sqrt{\frac{3}{2}} i \sin \theta \cos \theta \frac{1}{2} (3 \cos^2 \theta -1) -\sqrt{\frac{3}{2}} i \sin \theta \cos \theta -\frac{1}{2}\sqrt{\frac{3}{2}} (1 - \cos^2 \theta)
1 -\frac{i}{2} \sin \theta (\cos \theta - 1) \frac{1}{2}(2 \cos^2 \theta - \cos \theta -1) -\sqrt{\frac{3}{2}} i \sin \theta \cos \theta \frac{1}{2}(2 \cos^2 \theta + \cos \theta -1) -\frac{i}{2} \sin \theta (\cos \theta + 1)
2 \frac{1}{4} (\cos \theta - 1)^2 -\frac{i}{2} \sin \theta (\cos \theta - 1) -\frac{1}{2}\sqrt{\frac{3}{2}} (1 - \cos^2 \theta) -\frac{i}{2} \sin \theta (\cos \theta + 1) \frac{1}{4} (\cos \theta + 1)^2
Page générée en 0.117 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise