L'informatique quantique est basée sur la mécanique quantique. Les phénomènes utiles sont l'intrication quantique et la superposition. Il est cependant nécessaire de prévoir les effets contre-productifs de la décohérence.
La fonction d'onde en mécanique quantique est la représentation de l'état quantique dans la base de dimension infinie des positions. La probabilité de présence des particules représentées par cet état quantique est alors directement le carré de la norme de cette fonction d'onde.
En mécanique quantique, on représente l'état d'un système par un point dans un espace vectoriel hilbertien ; l'espace à considérer dépendant du système étudié. On utilise souvent la notation bra-ket pour représenter les états quantiques de manière simple. Par exemple, l'espace des états d'une particule sans spin est l'espace des fonctions de
On retrouve également le déterminisme de la mécanique classique, c'est-à-dire que l'on peut calculer comment l'état d'un système va évoluer au cours du temps (grâce à l'équation de Schrödinger), sauf lorsqu'il y a une mesure de l'état de notre système, auquel cas l'évolution n'est plus déterministe, mais probabiliste.
Il s'agit là d'une différence majeure avec la mécanique classique, qui découle du postulat de réduction du paquet d'onde et qui permet de donner une interprétation probabiliste aux états quantiques.
Supposons qu'un système quantique se trouve dans un état
On voit dès lors l'interprétation que l'on peut faire des produits scalaires
Il existe d'autres représentations mathématiques de l'état d'un système, la matrice densité étant une généralisation de la représentation exposée ici.
En mécanique quantique, on appelle intricat un état physique où est intriqué un système S1 & un système S2 sans que l'espace de Hilbert soit la somme tensorielle de l'espace de S1 et de l'espace S2. Il y a même au contraire corrélation complète de S1 et de S2 de sorte que l'entropie de (S1 union S2) dans un intricat est simplement celle de S2 ou de S1. Il y a sous-additivité complète.
L'intrication quantique est la ressource naturelle principale, utilisée en informatique quantique : actuellement, on la compare même au fer, tel que considéré à l'âge du bronze. De fait, la théorie de l'informatique quantique a beaucoup progressé depuis que l'on sait réaliser des intricats de faible décohérence : alors il est devenu pensable de prévoir un futur ordinateur quantique. Les mathématiciens (Shor, Kitaev, ...) ont fondé le tout nouveau calcul quantique, qui est en train de révolutionner le calcul de la complexité algorithmique.
Les opérations ne sont plus appliquées à des bits, mais à des qubits. L'espace des états possibles n'est pas le même que dans le monde classique. Les deux qubits possibles sont
où | α | 2 + | β | 2 = 1. Donc, à la mesure, on trouve
Il y a plusieurs façons physiques de représenter un qubit. Parmi celles-ci :