Notation bra-ket - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction


Mécanique quantique
 \hat H | \psi\rangle = i\hbar\frac{{\rm d}}{{\rm d}t}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

Cette boîte : voir • disc. • mod.

La notation bra-ket a été introduite par Paul Dirac pour faciliter l’écriture des équations de la mécanique quantique, mais aussi pour souligner l’aspect vectoriel de l’objet représentant un état quantique (voir Axiomes de la mécanique quantique).

Le nom provient d'un jeu de mots avec le terme (en) bracket qui signifie « crochet de parenthèse », en l'occurrence «  \langle  » et «  \rangle  » respectivement appelés « bra » et « ket » (un peu à l'image de bâbord et de tribord). Cette notation est depuis reprise dans l’étude mathématique de l’algèbre des opérateurs, dont le champ d’application est plus large.

L'origine du formalisme

Notation : la notation * signifie qu'il est question du transposé du conjugué d'un vecteur dont les coordonnées sont des nombres complexes.

On rappelle que les fonctions d'onde quantiques sont des fonctions du temps, des coordonnées spatiales, voire d'autres paramètres internes (spins, moments magnétiques, …) :

\Psi(t,x,y,z,\sigma,\ldots)

qu'elles sont solutions de l'équation de Schrödinger :

i \hbar \partial _t \Psi(t, x, \ldots)=-\frac{\hbar^2}{2m}\Delta \Psi(t, x, \ldots)+V(x, \ldots)\Psi(t, x, \ldots)

qu'elles sont normalisées, de sorte que :

\int \Psi^*(t, x, \ldots)\Psi(t, x, \ldots) \mathrm dx \ldots=1

et que la valeur d'une grandeur physique A est obtenue par :

\int \Psi^*(t, x, \ldots)A(x, \partial_x, \ldots)\Psi(t, x, \ldots) \mathrm dx \ldots= \langle A\rangle

La notation de Dirac s'appuie sur l'identification de l'intégrale précédente avec un produit hermitien sur l'espace des fonctions à valeur complexe de carré intégrable L2 :

\int \Psi^*(t, x, \ldots)\Psi(t, x, \ldots) \mathrm dx \ldots=\langle \Psi, \Psi\rangle

et par généralisation à deux fonctions Φ(t,...) et Ψ(t,...) :

\int \Phi^*(t, x, \ldots)\Psi(t, x, \ldots) \mathrm dx \ldots=\langle \Phi, \Psi\rangle

noté en mécanique quantique : \langle \Phi\mid \Psi\rangle On identifie donc :

  • la fonction Ψ(t,x,y,z,σ,...) avec un vecteur formel |\Psi\rangle dénommé ket Ψ.
  • la fonctionnelle duale \textstyle\int \Phi^*(t, x, \ldots) \mathrm dx \ldots avec \langle \Phi| dénommé bra Φ, dual du ket Ψ.

D'autre part sous le formalisme de Heisenberg, les solutions ne sont plus des fonctions, mais les vecteurs d'un espace de vecteurs d'états, ce qui rend l'identification encore plus directe.

Page générée en 0.421 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise