Postulats de la mécanique quantique - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les postulats

Postulat I

Définition de l'état quantique

La connaissance de l'état d'un système quantique est complètement contenue, à l'instant t, dans un vecteur normalisable de l'espace des états \mathcal{H} . Il est habituellement noté sous la forme d'un ket  | \psi (t) \rangle .

Postulat II

Principe de correspondance

À toute propriété observable, par exemple la position, l'énergie ou le spin, correspond un opérateur hermitien linéaire agissant sur les vecteurs d'un espace de Hilbert \mathcal{H} . Cet opérateur est nommé observable.

Les opérateurs associés aux propriétés observables sont définis par des règles de construction qui reposent sur un principe de correspondance :

L'opérateur de position 
\hat{\mathbf{Q}} = \mathbf{r}
L'opérateur d'énergie potentielle classique ou électromagnétique 
\hat{V}(\mathbf{r}) = V_{cl} (\mathbf{r})
L'opérateur de quantité de mouvement 
\hat{\mathbf{P}}(\mathbf{r}) = -i\hbar \nabla , où \nabla désigne le gradient des coordonnées \mathbf{r}
L'opérateur de moment angulaire 
\hat{\mathbf{L}}(\mathbf{r}) = \hat{\mathbf{Q}} \times \hat{\mathbf{P}} = -i\hbar\mathbf{r} \times \nabla
L'opérateur d'énergie cinétique 
\hat{K}(\mathbf{r}) = \frac{\hat{\mathbf{P}} \cdot \hat{\mathbf{P}}}{2m} = -\frac{\hbar^2}{2m} \nabla^2
L'opérateur d'énergie totale, appelé hamiltonien 
\hat{H} = \hat{K} + \hat{V} = \hat{K}(\mathbf{r}) + V_{cl} (\mathbf{r})
L'opérateur action du système, appelé lagrangien 
\hat{L} = \hat{K} - \hat{V}

Postulat III

Mesure : valeurs possibles d'une observable

La mesure d'une grandeur physique représentée par l'observable A ne peut fournir que l'une des valeurs propres de A.

Les vecteurs propres et les valeurs propres de cet opérateur ont une signification spéciale : les valeurs propres sont les valeurs pouvant résulter d'une mesure idéale de cette propriété, les vecteurs propres étant l'état quantique du système immédiatement après la mesure et résultant de cette mesure (voir postulat V : réduction du paquet d'onde). En utilisant la notation bra-ket, ce postulat peut s'écrire ainsi :

\hat{A} | \alpha_n \rangle = a_n | \alpha_n \rangle

\hat{A} , | \alpha_n \rangle et an désignent, respectivement, l'observable, le vecteur propre et la valeur propre correspondante.

Les états propres de tout observable \hat{A} sont complets et forment une base orthonormée dans l'espace de Hilbert.

Cela signifie que tout vecteur  | \psi (t) \rangle peut se décomposer de manière unique sur la base de ces vecteurs propres (  | \phi_i \rangle ):

 | \psi \rangle = c_1 | \phi_1 \rangle + c_2 | \phi_2 \rangle + ... + c_n | \phi_n \rangle

Postulat IV

Postulat de Born : interprétation probabiliste de la fonction d'onde

La mesure d'une grandeur physique représentée par l'observable A, effectuée sur l'état quantique normalisé  | \psi (t) \rangle , donne le résultat an, avec la probabilité Pn égale à |cn|2.

Le produit scalaire d'un état et d'un autre vecteur (qu'il appartienne ou non à \mathcal{H} ) fournit une amplitude de probabilité, dont le carré correspond à une probabilité ou une densité de probabilité de la façon suivante :

  • Pour un système constitué d'une seule particule dans un état |\alpha\rangle normé, la fonction d'onde est l'amplitude de probabilité que la particule soit à la position \mathbf{r} . La probabilité P_\alpha(\mathbf{r}) de trouver la particule entre \mathbf{r} et \mathbf{r} + d\mathbf{r} est:
    P_\alpha(\mathbf{r}) = {|\langle\mathbf{r}|\alpha\rangle|}^2 d^3\mathbf{r} \equiv {|\Psi_\alpha(\mathbf{r})|}^2 d^3\mathbf{r}
    Donc \rho_\alpha(\mathbf{r})={|\langle\mathbf{r}|\alpha\rangle|}^2 est une densité de probabilité.
  • Si le système est dans un état |\alpha\rangle normé, alors l'amplitude de probabilité C_{\beta\alpha}\, et la probabilité P_{\beta\alpha}\, de le retrouver dans tout autre état |\beta\rangle sont:
    C_{\beta\alpha} = \langle\beta|\alpha\rangle .
    P_{\beta\alpha} = {|\langle\beta|\alpha\rangle|}^2 .
    Ni |\alpha\rangle , ni |\beta\rangle ne doivent être nécessairement un état propre d'un opérateur quantique.
  • Dans l'éventualité où un système peut évoluer vers un état |\alpha, t\rangle au temps t par plusieurs trajets différents, alors, pour autant que l'on n'effectue pas de mesure pour déterminer quel trajet a été effectivement suivi, |\alpha, t\rangle est une combinaison linéaire des états |\alpha_j, t\rangle j spécifie le trajet:
    |\alpha, t\rangle = \sum{w_j |\alpha_j, t\rangle}
    w_j\, sont les coefficient de la combinaison linéaire.
    L'amplitude C_{\beta\alpha}(t) = {|\langle\beta|\alpha, t\rangle|} devient alors la somme des amplitudes C_{\beta\alpha_j}(t) et la probabilité P_{\beta\alpha}(t)\, contient des termes d'interférence :
    P_{\beta\alpha}(t) = {|\langle\beta|\alpha, t\rangle|}^2 = {\left|\sum{w_j\langle\beta |\alpha_j, t\rangle}\right|}^2 = {\left|\sum{w_j C_{\beta\alpha_j}(t)}\right|}^2
    Mais si une mesure a déterminé que le trajet k a été suivi, alors les coefficients deviennent w_j \rightarrow \delta_{jk} et les sommes précédentes se réduisent à un seul terme.
  • En supposant que le système se trouve dans un état |\alpha\rangle , alors la prédiction théorique de la valeur moyenne de la mesure de l'observable \hat{A} est donnée par :
    {\langle\hat{A}\rangle}_\alpha = \langle\alpha|\hat{A}|\alpha\rangle

Postulat V

Mesure : réduction du paquet d'onde; obtention d'une valeur unique; projection de l'état quantique

Si la mesure de la grandeur physique A, à l'instant t, sur un système représenté par le vecteur  | \psi \rangle donne comme résultat la valeur propre a_n\, , alors l'état du système immédiatement après la mesure est projeté sur le sous-espace propre associé à a_n\, :

|\psi '\rangle=\frac{\hat{P}_n|\psi\rangle}{\sqrt{P(a_n)}}

P(a_n)\, est la probabilité de trouver comme résultat la valeur propre a_n\, et \hat{P}_n est l'opérateur projecteur défini par

\hat{P}_n=\sum^{g_n}_{k=1}|u_{n,k}\rangle \langle u_{n,k}|

Avec g_n\, le degré de dégénérescence de la valeur propre an et les |u_{n,k}\rangle les vecteurs de son sous-espace propre.

Ce postulat est aussi appelé "postulat de réduction du paquet d'onde".

Postulat VI

Évolution temporelle de l'état quantique

L'état \left|\Phi, t\right\rangle de tout système quantique non-relativiste est une solution de l'équation de Schrödinger dépendante du temps:

i\hbar\frac{\partial}{\partial t}\left|\Phi, t\right\rangle = \hat{H}\left|\Phi, t\right\rangle

Le sixième postulat est l'équation de Schrödinger. Cette équation est l'équation dynamique de la mécanique quantique. Elle signifie simplement que c'est l'opérateur « énergie totale » du système ou hamiltonien, qui est responsable de l'évolution du système dans le temps. En effet, la forme de l'équation montre qu'en appliquant l'hamiltonien à la fonction d'onde du système, on obtient sa dérivée par rapport au temps c'est-à-dire comment elle varie dans le temps.

Cette équation n'est valable que dans le cadre non relativiste.

Page générée en 0.172 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise