Racine carrée de deux - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Autres propriétés

Normalité

La normalité est un concept se basant sur la distribution des chiffres du développement décimal d’un nombre irrationnel, à savoir si tous les chiffres de 0 à 9 apparaissent dans ce développement et avec la même fréquence. En ce qui concerne √2, on ignore s’il est normal dans le système décimal ou dans toute autre base de numération.

Degré algébrique et degré d'irrationalité

\sqrt{2}\, est un nombre algébrique de degré 2, dit entier quadratique, car solution de l’équation polynômiale du second degré à coefficients entiers x² − 2 = 0 et de monôme dominant de coefficient égal à un, mais d’aucune de degré 1 de par son irrationalité. On sait ainsi qu’il est difficilement approchable par une suite rationnelle pn/qn ; l’erreur est en mieux en

|√2 − pn/qn| ~ 1/qn².

Comme pour tout nombre algébrique irrationnel, son degré d’irrationalité est 2.

Développement en fraction continue

√2 est relié à un certain nombre de développements en fractions continues périodiques, par propriété des entiers quadratiques.

√2 est relié au développement en fraction continue suivant

a\sqrt{2} - b = \frac1{2b + \frac1{2b + \frac1{2b + \cdots}}}\,

pour 2a² − b² = 1, (a, b) entiers strictement positifs. On notera ce développement de manière plus concise :

a√2 − b = [0; 2b, 2b, 2b, …]

On en tire les valeurs suivantes de √2 :

√2 = [1; 2, 2, 2, …].
√2 = 1/5 × [7; 14, 14, 14, …]
√2 = 1/29 × [41; 82, 82, 82, …]

Plus généralement, \sqrt{2} se relie à la fraction continue généralisée suivante :

a\sqrt{2} - b = \frac k{2b + \frac k{2b + \frac k{2b + \cdots}}}\,

notée sous forme plus concise

a√2 − b = [0; k, 2b; k, 2b; k, 2b; …]

avec k = 2a² − b², et (a, b) entiers strictement positifs. On en déduit les quelques développements de \sqrt{2}\, suivants :

√2 = 1/2 × [3; -1, 6; -1, 6; -1, 6; …]
√2 = 1/12 × [17; -1, 34; -1, 34, -1, 34; …]
√2 = 1/70 × [90; -1, 180; -1, 180, -1, 180; …]

Éléments de démonstration : soit la suite (un) définie par la relation de récurrence un + 1 = −k/(2b + un) et εn = |un − (a√2 − b)|. Alors on peut montrer que εn + 1 < n, avec 1/|1 + 2b/(a√2 − b)| < K < 1 dans un voisinage de a√2 − b.

Développements en série et produit infini

Produits infinis

L’identité cos(π/4) = sin(π/4) = 1/√2 et la représentation en produit infini du sinus et du cosinus mènent aux développements suivants

\sqrt 2 = 2\prod_{k=0}^\infty \frac{(4k+1)(4k+3)}{(4k+2)^2} =  2 \left(1-\frac{1}{4}\right) \left(1-\frac{1}{36}\right) \left(1-\frac{1}{100}\right) \cdots
\sqrt{2} = \prod_{k=0}^\infty \frac{(4k+2)^2}{(4k+1)(4k+3)} = \left(\frac{2 \cdot 2}{1 \cdot 3}\right) \left(\frac{6 \cdot 6}{5 \cdot 7}\right) \left(\frac{10 \cdot 10}{9 \cdot 11}\right) \left(\frac{14 \cdot 14}{13 \cdot 15}\right) \cdots

Le dernier produit peut s’écrire de manière équivalente :

\sqrt{2} = \prod_{k=0}^\infty \left(1+\frac{1}{4k+1}\right) \left(1-\frac{1}{4k+3}\right) = \left(1+\frac{1}{1}\right) \left(1-\frac{1}{3}\right) \left(1+\frac{1}{5}\right) \left(1-\frac{1}{7}\right) \cdots.

Séries

Le nombre peut aussi être évalué sous forme de série en utilisant le développement de Taylor d’une fonction trigonométrique en \left({\pi}/{4}\right)  :

\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k}}{(2k)!}.
\frac{1}{\sqrt{2}} = \sum_{k=0}^\infty \frac{(-1)^k \left(\frac\pi4\right)^{2k+1}}{(2k+1)!}.

On peut aussi utiliser la fonction \sqrt{1+x}\, en 1 :

La convergence de la dernière série peut être accélérée par le biais d’une transformation d’Euler pour donner :

\sqrt{2} = \sum_{k=0}^\infty \frac{(2k+1)!}{(k!)^2 2^{3k+1}} = \frac{1}{2} +\frac{3}{8} + \frac{15}{64} + \frac{35}{256} + \frac{315}{4096} + \frac{693}{16384} + \cdots.
Page générée en 0.097 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise