Radar

Technologie du radar

Composantes d'un système radar

Composantes d'un radar (ici, un radar monostatique)

Un radar est formé de différentes composantes:

  • L'émetteur qui génère l'onde radio (Les ondes radioélectriques (dites ondes radio) sont des ondes électromagnétiques dont la fréquence d'onde est par convention[1] comprise entre 9 kHz et 3000 GHz, ce qui correspond à des...).
  • Sur les radars à hyperfréquences (fréquences supérieures au gigahertz), c'est un guide d'onde (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible de propriétés physiques locales. Elle transporte de l'énergie sans transporter de...) qui amène l'onde (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales. Elle transporte de l'énergie sans transporter de matière. Une onde...) vers l'antenne (En radioélectricité, une antenne est un dispositif permettant de rayonner (émetteur) ou de capter (récepteur) les ondes électromagnétiques.).
  • Le duplexeur, un commutateur électronique, dirige l'onde vers l'antenne lors de l'émission ou le signal ( Termes généraux Un signal est un message simplifié et généralement codé. Il existe sous forme d'objets ayant des formes particulières. Les...) de retour depuis l'antenne vers le récepteur lors de la réception quand on utilise un radar (Le radar est un système qui utilise les ondes radio pour détecter et déterminer la distance et/ou la vitesse d'objets tels que les avions, bateaux,...) monostatique. Il permet donc d'utiliser la même antenne pour les deux fonctions. Il est primordial qu'il soit bien synchronisé, puisque la puissance (Le mot puissance est employé dans plusieurs domaines avec une signification particulière :) du signal émis est de l'ordre du mega-watt ce qui est trop important pour le récepteur qui, lui, traite des signaux d'une puissance de l'ordre de quelques nano-watts. Au cas où l'impulsion émise serait dirigée vers le récepteur, celui-ci serait instantanément détruit.
  • L'antenne dont le rôle est de diffuser l'onde électromagnétique vers la cible avec le minimum de perte. Sa vitesse (On distingue :) de déplacement ( En géométrie, un déplacement est une similitude qui conserve les distances et les angles orientés. En psychanalyse, le déplacement est mécanisme de défense déplaçant la valeur, et finalement le sens...), rotation et/ou balancement, ainsi que sa position, en élévation comme en azimut (L’azimut est l'angle horizontal entre la direction d'un objet et une direction de référence.), sont asservies, soit mécaniquement, mais parfois aussi électroniquement (voir l'article Antenne réseau (Un réseau informatique est un ensemble d'équipements reliés entre eux pour échanger des informations. Par analogie avec un filet (un réseau est un « petit rets », c'est-à-dire un petit filet), on appelle nœud...) à commande (Commande : terme utilisé dans de nombreux domaines, généralement il désigne un ordre ou un souhait impératif.) de phase). L'antenne est sollicitée tant en émission qu'en réception. Ces deux fonctions peuvent être cependant séparées entre deux antennes dans le cas de radars multistatiques.
  • Le récepteur qui reçoit le signal incident (cible - antenne - guide d'ondes - duplexeur), le fait émerger des bruits radios parasites, l'amplifie, le traite;
  • Un étage de traitement de signal permettant de traiter le signal brut afin d'en extraire des données utiles à l'opérateur (Le mot opérateur est employé dans les domaines :) (détection, suivi et identification de cible; extraction de paramètres météorologiques, océanographiques, etc.). Le tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) est contrôlé par le système électronique du radar, programmé selon un logiciel (En informatique, un logiciel est un ensemble d'informations relatives à des traitements effectués automatiquement par un appareil informatique. Y sont inclus les...) de sondage ( Un sondage peut désigner une technique d'exploration locale d'un milieu particulier. Un sondage peut également être une méthode statistique d'analyse d'une population humaine ou non humaine à partir...). Les données obtenues sont alors affichées aux utilisateurs.

Radar monostatique, bistatique, multistatique

Dans la plupart des cas, l'émetteur et le récepteur du radar partagent une électronique et une antenne commune. On parle alors de radar monostatique. Rien n'empêche cependant de considérer un système radar où l'émetteur et le récepteur sont séparés; on parle alors de radar bistatique, ou même de configuration multistatique, si l'on a un émetteur et plusieurs récepteurs distincts. L'une et l'autre configuration offrent des avantages et des inconvénients:

  • dans une configuration monostatique, le partage de l'électronique et de l'antenne permet de réduire l'encombrement et les coûts de synchronisation entre l'émetteur et le récepteur, ce qui explique pourquoi l'immense majorité des radars sont monostatiques. En contrepartie, seul le signal rétrodiffusé par la cible est reçu par le radar. D'autre part, dans un contexte (Le contexte d'un évènement inclut les circonstances et conditions qui l'entourent; le contexte d'un mot, d'une phrase ou d'un texte inclut les mots qui l'entourent. Le...) militaire, l'émetteur peut être détecté par l'ennemi et détruit...
  • dans une configuration bistatique, le récepteur est distinct de l'émetteur et totalement passif, donc moins facilement détectable par un ennemi potentiel. En plus d'émetteurs radar spécialisés, il est également envisagé d'utiliser des émetteurs dits d'opportunité comme des antennes-relais GSM, ou de télévision (La télévision est la transmission, par câble ou par ondes radioélectriques, d'images ou de scènes animées et généralement sonorisées qui sont reproduites sur un poste récepteur appelé téléviseur (ou, par abus de...), ou des satellites GPS dont le signal est détourné de leur utilisation primaire pour effectuer à moindres frais et de manière discrète un travail de mesure habituellement laissé aux radars. Enfin, la possibilité de positionner l'émetteur et le récepteur à volonté permet d'explorer d'autres configurations de réflexion permettant d'augmenter le volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.) d'informations disponibles sur la cible. En contrepartie, l'utilisation d'une configuration bistatique demande une bonne synchronisation entre l'émetteur et le récepteur, et l'utilisation d'une géométrie (La géométrie est la partie des mathématiques qui étudie les figures de l'espace de dimension 3 (géométrie euclidienne) et, depuis le XVIIIe siècle, les figures d'autres types...) d'acquisition (En général l'acquisition est l'action qui consiste à obtenir une information ou à acquérir un bien.) moins triviale. Le radar basses fréquences de Jindalee, en Australie (L’Australie (officiellement Commonwealth d’Australie) est un pays de l’hémisphère Sud dont la superficie couvre la plus grande partie de l'Océanie. En...), est un exemple de radar bistatique opérationnel.

Lorsque l'on parle de radar bistatique, on suppose implicitement que l'émetteur et le récepteur sont réellement séparés (soit du point (Graphie) de vue (La vue est le sens qui permet d'observer et d'analyser l'environnement par la réception et l'interprétation des rayonnements lumineux.) de la distance, soit d'un point de vue angulaire). Si l'émetteur et le récepteur sont distincts physiquement (antennes différentes) mais situés presque au même endroit, le signal reçu est qualitativement proche d'un signal monostatique. On parle ainsi de configurations fortement bistatiques ou faiblement bistatiques pour intégrer ces deux possibilités.

Génération de l'onde

L'émetteur au site du radar comprend: un oscillateur (En physique, un oscillateur est un système manifestant une variation périodique dans le temps (ou pseudo-périodique s'il existe une dissipation d'énergie). Les exemples les plus courants sont utilisés en mécanique classique (pendule, masse...) permanent, un amplificateur (On parle d'amplificateur de force pour tout une palette de systèmes qui amplifient les efforts : mécanique, hydraulique, pneumatique, électrique.) et un modulateur. Pour les radars à hyperfréquences, qui forment l'immense majorité des radars en service, la génération d'impulsions courtes et très énergétiques demande une technologie (Le mot technologie possède deux acceptions de fait :) qui est différente (En mathématiques, la différente est définie en théorie algébrique des nombres pour mesurer l'éventuel défaut de dualité d'une...) de celle, disons, d'un émetteur radio (Un émetteur radio est un appareil électronique destiné à émettre certaines ondes radioélectriques modulées, permettant ainsi de transmettre des données (sons, images...) utilisé en télécommunications (Les télécommunications sont aujourd’hui définies comme la transmission à distance d’information avec des moyens électroniques. Ce terme est plus utilisé que le terme synonyme officiel «communication...). Ainsi, la génération de l'onde se fait de la manière suivante:

  • L'oscillateur permanent basé sur la technologie des tubes à cavité résonnante, il peut être un klystron qui a une fréquence (En physique, la fréquence désigne en général la mesure du nombre de fois qu'un phénomène périodique se reproduit par unité de temps. Ainsi lorsqu'on emploie le mot...) très stable, un magnétron dont la fréquence varie dans le temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.), ou d'autres types d'oscillateurs à état solide.
  • Les générateurs d'impulsion, ou modulateurs, sont des pièces électroniques qui produisent l'impulsion radar à partir de l'onde continue produite par l'oscillateur. En quelque sorte, ils laissent passer (Le genre Passer a été créé par le zoologiste français Mathurin Jacques Brisson (1723-1806) en 1760.) l'onde vers l'amplificateur durant un très court laps de temps (de l'ordre de la µ seconde). Ceci permet de concentrer l'énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) de l'onde dans cette impulsion (puissance de l'ordre du M Watt). Il existe différentes sortes de commutateurs dont le plus connu est le thyratron. Le klystron peut lui-même remplir les rôles d'oscillateur, de générateur d'impulsion et d'amplificateur.
  • Une fois que l'onde est produite, le guide d'onde est chargé de l'amener vers l'antenne avec une perte du signal la plus faible possible.

Plages de fréquences utilisées en radar

Généralités

La fréquence est principalement choisie en fonction de l'application visée. De manière générale, une grande longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa...) d'onde (bandes HF) permettra de profiter des phénomènes de propagation et de rebond sur l'ionosphère (L’ionosphère est une région de l'atmosphère située entre la mésosphère et la magnétosphère, c'est-à-dire entre 60 et 800 km d'altitude. Elle est constituée de gaz fortement ionisé...), ce qui permet de porter à des milliers de kilomètres (Le mètre (symbole m, du grec metron, mesure) est l'unité de base de longueur du Système international. Il est défini comme la distance parcourue par la lumière dans le vide en 1/299 792 458 seconde.) (cas des radar trans-horizon). D'autre part, seuls les objets dont la taille typique est au moins de l'ordre de grandeur de la longueur d'onde sont visibles. Par exemple, une forêt (Une forêt ou un massif forestier est une étendue boisée, relativement dense, constituée d'un ou plusieurs peuplements d'arbres et...) sera partiellement transparente pour les grandes longueurs d'ondes (seuls les troncs d'arbres sont visibles); tandis que la forêt sera opaque en bande X (Dans les télécommunications radio, la bande X est une plage de fréquences aux alentours de 8 GHz. Elle est attribuée a l'armée. On la retrouve également dans certains radars météorologiques mais la forte atténuation par les précipitations...) (seule la canopée (La canopée est l'étage supérieur de la forêt, en contact direct avec l'atmosphère libre. Elle est parfois considérée comme un habitat ou un écosystème en tant que tel, notamment...) sera visible), car la longueur d'onde est de l'ordre de la taille des feuilles et des branches. La taille de l'antenne influe également sur la longueur d'onde à utiliser (et réciproquement).

Les bandes de fréquences civiles et militaires sont allouées de manière internationale au sein de la Conférence Mondiale des Radiocommunications réunie tous les trois ans au sein de l'Union Internationale des Télécommunications (L'Union internationale des télécommunications (UIT) est la plus ancienne organisation internationale technique de coordination, puisqu'elle a été créée sous le nom d'Union...) (prochaine conférence en 2010), avec également la participation d'organismes internationaux comme l'OTAN. Les demandes de bande doivent être déposées longtemps à l'avance dans la mesure où les ordres du jour (Le jour ou la journée est l'intervalle qui sépare le lever du coucher du Soleil ; c'est la période entre deux nuits, pendant laquelle les rayons du Soleil éclairent le ciel. Son début (par rapport à...) des conférences sont généralement fixées plusieurs années à l'avance. D'autre part, au sein d'un pays (Pays vient du latin pagus qui désignait une subdivision territoriale et tribale d'étendue restreinte (de l'ordre de quelques centaines de km²),...), les institutions régaliennes peuvent s'arroger des bandes de fréquence pour l'utilisation exclusive des forces militaires ou de police. Toutefois, ces institutions subissent des pressions de plus en plus importantes de la part des industriels dans la mesure où les nouvelles technologies civiles (GSM, Wi-Fi (Le wifi ou wi-fi (prononcé /wifi/) est une technologie de réseau informatique sans fil mise en place pour fonctionner en réseau interne et, depuis, devenue un moyen d'accès à haut débit à...), etc) ont une occupation spectrale grandissante, mais offrant un profit financier très large. L'heure (L’heure est une unité de mesure du temps. Le mot désigne aussi la grandeur elle-même, l'instant (l'« heure qu'il est »), y compris en sciences...) est donc à la coopération entre les différents acteurs et à une cohabitation (pas toujours très réussie) de manière à limiter les brouillages entre les différentes applications. Toujours est-il que la bande de fréquence (Une bande de fréquence définit une plage de fréquences qui ont des propriétés similaires :) la plus adaptée d'un point de vue applicatif n'est pas toujours disponible et qu'il faut souvent trouver un compromis.

Noms des bandes de fréquence utilisées en radar

Le nom des plages de fréquences utilisées dans le monde (Le mot monde peut désigner :) des radars provient de la Seconde ( Seconde est le féminin de l'adjectif second, qui vient immédiatement après le premier ou qui s'ajoute à quelque chose de nature identique. La seconde est une unité de...) Guerre mondiale. En effet, pour garder secret le développement de ce système, les militaires ont décidé de donner à ces plages des noms de code qui sont demeurés en usage (L’usage est l'action de se servir de quelque chose.) depuis. Ils ont été adoptés aux États-Unis par le Institute of electrical and electronics engineers (IEEE) et internationalement par l’Union internationale des télécommunications. Cependant, certains utilisateurs des bandes radios, comme les télédiffuseurs et l’industrie des contre-mesures militaires, ont remplacé les vocables traditionnels par leur propre identification.

Plages de fréquences radar
Nom de bande Plage (La géomorphologie définit une plage comme une « accumulation sur le bord de mer de matériaux d'une taille allant des sables fins aux blocs ». La plage ne se limite donc pas aux étendues de sable...) de fréquences Longueurs d’onde Commentaires
HF 3-30 MHz 10-100 m Pour high frequency (haute fréquence). Utilisée par les radars côtiers et les radars “au-delà de l’horizon”.
P < 300 MHz 1 m+ Pour précédent : appliquée a posteriori aux radars primitifs
VHF 50-330 MHz 0.9-6 m Pour very high frequency (très haute fréquence). Utilisée par les radars à très longue portée et par ceux à pénétration de sol.
UHF 300-1000 MHz 0.3-1 m Pour ultra high frequency (ultra haute fréquence). Radars à très longue portée (ex. détection de missiles balistiques), pénétration de sol et de feuillage.
L 1-2 GHz 15-30 cm Pour long. Utilisée pour le contrôle (Le mot contrôle peut avoir plusieurs sens. Il peut être employé comme synonyme d'examen, de vérification et de maîtrise.) aérien de longue portée et la surveillance aérienne, le GPS (et donc les radars passifs se basant dessus).
S 2-4 GHz 7.5-15 cm Pour short (court). Utilisée par les radars de trafic aérien local, les radars météorologiques et navals.
C 4-8 GHz 3.75-7.5 cm Compromis entre les bandes S et X pour les transpondeurs satellitaires et les radars météorologiques.
X 8-12 GHz 2.5-3.75 cm Pour les radars météorologiques, les autodirecteurs de missiles, les radars de navigation (La navigation est la science et l'ensemble des techniques qui permettent de :), les radars à résolution moyenne (La moyenne est une mesure statistique caractérisant les éléments d'un ensemble de quantités : elle exprime la grandeur qu'auraient chacun des membres de l'ensemble s'ils étaient tous identiques sans changer la...) de cartographie (La cartographie désigne la réalisation et l'étude des cartes géographiques. Le principe majeur de la cartographie est la représentation de données sur...) et la surveillance au sol des aéroports.
Ku 12-18 GHz 1,67-2,5 cm Fréquence juste sous K (indice 'u' pour under en anglais) pour les radars de cartographie à haute résolution et l'altimétrie satellitaire.
K 18-27 GHz 1,11-1,67 cm De l’Allemand kurz(court). Très absorbées par la vapeur () d’eau, Ku et Ka sont utilisées pour la détection des gouttelettes de nuages en météorologie (La météorologie a pour objet l'étude des phénomènes atmosphériques tels que les nuages, les précipitations ou le vent dans le but de...) et dans les radars routiers (24.150 ± 0.100 GHz) manuels.
Ka 27-40 GHz 0.75-1.11 cm Fréquence juste au-dessus de K (indice 'a' pour "above" en anglais) pour la cartographie, la courte portée, la surveillance au sol des aéroports, les radars routiers (34.300 ± 0.100 GHz) automatisés, et les radars anti-collision montés sur les voitures haut de gamme.
mm 40-300 GHz 1 - 7,5 mm Bande millimétrique subdivisée en quatre parties :
Q 40-60 GHz 5 mm - 7,5 mm Utilisée pour les communications militaires.
V 50-75 GHz 6.0 - 4 mm Très fortement absorbée par l'atmosphère (Le mot atmosphère peut avoir plusieurs significations :).
E 60-90 GHz 6.0 - 3,33 mm
W 75-110 GHz 2.7 - 4.0 mm Utilisée comme radar anti-collisions automobile (Une automobile, ou voiture, est un véhicule terrestre se propulsant lui-même à l'aide d'un moteur. Ce véhicule est conçu pour le transport terrestre de personnes ou de marchandises, elle est équipée en...) et pour l'observation (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude appropriés....) météorologique à haute résolution et de courte portée.

Les antennes

Radars de La Dôle

En toute généralité, une antenne (radio ou radar) peut être vue comme un transducteur (Un transducteur est un dispositif convertissant une grandeur physique en une autre.):

  • d'une part, utilisée en émission, l'antenne sert à convertir une énergie électrique (Un apport d'énergie électrique à un système électrotechnique est nécessaire pour qu'il effectue un travail : déplacer une charge, fournir de la lumière,...) qui règne à la surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois frontière...) du fil ou du plan de l'antenne, en une onde électromagnétique qui va se propager dans l'espace.
  • d'autre part, utilisée en réception, l'antenne convertit une énergie électromagnétique (Les forces électrostatiques et magnétiques peuvent faire déplacer des objets à distance, il semble donc évident qu'à tout phénomène électromagnétique est associé une énergie potentielle,...) provenant d'une direction donnée (Dans les technologies de l'information (TI), une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction d'affaire, d'un événement, etc.) de l'espace, en une énergie électrique qui existe à la surface de l'antenne et qui, une fois recueillie et amplifiée, formera le signal reçu.

Cette conversion d'énergie ne se fait pas sans pertes; ainsi, une antenne est caractérisée par un coefficient de rendement entre 0 et 1, que l'on souhaite être le plus élevé possible.

Si l'on désire utiliser le radar pour localiser une cible, il faut concevoir l'antenne de manière à ce qu'elle ne reçoive les ondes ne provenant que d'une direction privilégiée; cette opération a également un effet secondaire bénéfique dans la mesure où l'antenne aura une meilleure portée tant en réception qu'en émission dans cette direction. L'antenne est donc également caractérisée par sa directivité et son "gain" maximal.

On verra plus loin dans ce paragraphe que la directivité de l'antenne est influencée par la longueur d'onde du signal émis et des dimensions de l'antenne; dans certaines applications (radar embarqué sur avion (Un avion, selon la définition officielle de l'Organisation de l'aviation civile internationale (OACI), est un aéronef plus lourd que l'air, entraîné par un organe moteur (dans le cas d'un engin sans moteur, on parlera...) ou satellite), les dimensions de l'antenne peuvent être une contrainte forte qui doit donc également être considérée.

Antennes filaires

Un radar Lichtenstein SN-2 monté sur un chasseur allemand Bf 110.

Pour des raisons techniques (le magnétron n'étant pas encore pas totalement maîtrisé), les premiers radars de la Seconde Guerre mondiale travaillaient à des fréquences basses pour lesquelles il était commode d'utiliser des antennes filaires. Ces antennes sont bien connues du grand public car leur forme n'est à la base pas différente de celle des antennes de nos postes radio (A supprimer) ou de nos télévisions. En fonction de l'agencement des brins composant l'antenne, il est possible d'obtenir une antenne plus ou moins directive. Une antenne monobrin sera omnidirectionnelle dans le plan médian de l'antenne; au contraire, une antenne Yagi est très directive dans son axe principal. Cette dernière est la célèbre "antenne râteau" qui est typiquement utilisée en télévision.

Plusieurs possibilités d'utilisations ont été explorées au cours du temps. Ainsi, le système "Chain Home" britannique durant la Seconde Guerre mondiale, était formé d'antennes dipolaires qui émettaient de façon omni-directionnelle, et d'antennes réceptrices directionnelles. Ces dernières étaient formées de deux antennes dipolaires placées à angle (En géométrie, la notion générale d'angle se décline en plusieurs concepts apparentés.) droit. En effet, pour une antenne dipolaire, la réception est maximale à angle droit de la source d'échos, et minimale lorsque l'antenne pointe sa direction. L'opérateur radar peut donc déterminer la direction du signal en tournant les antennes pour déterminer ce doublet max/min des affichages de ses deux antennes. Les premiers radars aéroportés, comme le radar allemand Lichtenstein de la Seconde Guerre mondiale étaient souvent formés de réseaux d'antennes Yagi montés sur le nez (Le nez (du latin nasus) est chez l'homme la saillie médiane du visage située au-dessus de la lèvre supérieure et qui, en le...) de l'avion. Ces antennes ajoutaient une traînée (En mécanique des fluides, la traînée est la force qui s'oppose au mouvement d'un corps dans un liquide ou un gaz. Mathématiquement c'est la composante des efforts exercés sur le corps, dans la...) supplémentaire à l'avion, ce qui n'est généralement pas désirable ; or il n'était pas possible d'utiliser des antennes moins encombrantes, car celles-ci n'étaient pas adaptées à la fréquence basse qui était alors utilisée.

Les antennes filaires restent utilisées de nos jours pour les radars à "basse" fréquence (en dessous de quelques centaines de mégahertz, mais il n'y a pas de limite exacte).

Antenne à ouverture

Antenne à ouverture typique (1) trajectoire (La trajectoire est la ligne décrite par n'importe quel point d'un objet en mouvement, et notamment par son centre de gravité.) de l'onde électromagnétique transitant dans le guide d'onde (2) avant d'arriver dans un cornet (3) qui éclaire la surface du réflecteur (4) formant (Dans l'intonation, les changements de fréquence fondamentale sont perçus comme des variations de hauteur : plus la fréquence est élevée, plus la...) l'ouverture, donnant ainsi naissance à un champ électrique (Dans le cadre de l'électromagnétisme, le champ électrique est un objet physique qui permet de définir et éventuellement de mesurer en tout point de l'espace l'influence exercée à distance par des particules chargées...) \overrightarrow E_0 (pas nécessairement constant) sur l'ouverture.

Pour les radars à hyperfréquences, un type classique d'antenne est l'antenne à ouverture. Cette antenne fonctionne de la manière suivante:

  • l'onde électromagnétique générée par le magnétron est conduite vers l'antenne en suivant le trajet (1) au travers d'un guide d'onde (2);
  • le guide d'onde se termine par un cornet (3) qui éclaire la surface d'une plaque ou d'un grillage de grandes dimensions qui fait office de réflecteur (4);
  • le champ (Un champ correspond à une notion d'espace défini:) électrique \overrightarrow E_0 qui se forme à la surface de cette surface va à son tour donner naissance à une onde électromagnétique qui va se propager dans l'espace. Le champ sur la surface du réflecteur peut être variable (En mathématiques et en logique, une variable est représentée par un symbole. Elle est utilisée pour marquer un rôle dans une formule, un prédicat ou un algorithme. En...) en amplitude (Dans cette simple équation d’onde :) et en direction.

Si le « réflecteur » est de forme parabolique, et si le cornet est situé au foyer de la parabole (La parabole est l'intersection d'un plan avec un cône lorsque le plan est parallèle à l'une des génératrices du cône. Elle est un type de courbe...), alors les rayons réfléchis par la surface repartiront grosso modo de manière parallèle vers l'infini (Le mot « infini » (-e, -s ; du latin finitus, « limité »), est un adjectif servant à qualifier quelque chose qui n'a pas de limite en nombre ou en taille.) dans la direction x, tout comme l'ampoule d'un phare de voiture (Une automobile, ou voiture, est un véhicule terrestre se propulsant lui-même à l'aide d'un moteur. Ce véhicule est conçu pour le transport terrestre de personnes ou de marchandises, elle est équipée en conséquence. C'est un des...) est située au foyer d'un réflecteur parabolique métallisé qui réfléchit les rayons lumineux loin sur la route (Le mot « route » dérive du latin (via) rupta, littéralement « voie brisée », c'est-à-dire creusée dans la roche, pour ouvrir le chemin.).

Toutefois, à la différence du phare de voiture, la taille de la surface formant le réflecteur est relativement petite devant la longueur d'onde du signal émis et il n'est alors pas possible de négliger les phénomènes de diffraction (La diffraction est le comportement des ondes lorsqu'elles rencontrent un obstacle qui ne leur est pas complètement transparent ; le phénomène peut être interprété par la diffusion d'une...). Chaque point de la surface du réflecteur va rayonner comme une source ponctuelle, et le champ total ( Total est la qualité de ce qui est complet, sans exception. D'un point de vue comptable, un total est le résultat d'une addition, c'est-à-dire une somme. Exemple : "Le total des dettes". En physique le total n'est pas forcément...) émis en un point est la somme cohérente de tous les champs infinitésimaux. Tout se passe comme dans le cas de la diffraction d'une onde par une ouverture. Afin de mieux sentir la physique (La physique (du grec φυσις, la nature) est étymologiquement la « science de la nature ». Dans un sens général et ancien, la physique désigne la connaissance de la...) du phénomène, considérons le cas idéalisé suivant:

  • l'ouverture est plane (La plane est un outil pour le travail du bois. Elle est composée d'une lame semblable à celle d'un couteau, munie de deux poignées, à chaque extrémité de la...) et rectangulaire, de dimensions L (sur l'axe y) et l (sur l'axe z);
  • la surface métallique de l'ouverture est parfaitement conductrice;
  • le champ électrique engendré par le cornet sur la surface de l'antenne de direction constante et d'amplitude constante E0;

Soit à mesurer l'amplitude de l'onde émise dans une direction repérée par les angles φ (angle azimutal horizontal (Horizontal est une orientation parallèle à l'horizon, et perpendiculaire à la verticale. Une ligne horizontale va « de la gauche vers la droite » ou...) ou gisement) et θ (angle d'élévation ou de site), et mesurée à une distance r de l'antenne suffisamment grande pour que l'approximation (Une approximation est une représentation grossière c'est-à-dire manquant de précision et d'exactitude, de quelque chose, mais encore assez significative pour être utile. Bien qu'une approximation...) de Fraunhofer soit vérifée. La théorie de la diffraction (La théorie de la diffraction, dans sa forme élémentaire, repose sur le principe de Huygens-Fresnel. Selon ce principe, chaque point atteint par une onde se comporte comme une source secondaire. La figure de diffraction...) montre que celle-ci vaut :

E(r,\theta, \phi)=E_0\cdot\frac{Ll}{\lambda r}\cdot\operatorname{sinc}\left( \pi \frac{L}{\lambda}\cdot\sin(\phi)\cdot\cos(\theta)\right) \operatorname{sinc} \left( \pi \frac{l}{\lambda}\cdot\sin(\theta)\right)

Dans cette expression, sinc est la fonction sinus (En mathématiques, les fonctions trigonométriques sont des fonctions d'angle importantes pour étudier les triangles et modéliser des phénomènes...) cardinal définie par sin(x) / x. L'amplitude maximale est obtenue sur l'axe X.

Gain normalisé d'une antenne rectangulaire idéale de longueur 20 cm, largeur (La largeur d’un objet représente sa dimension perpendiculaire à sa longueur, soit la mesure la plus étroite de sa face. En géométrie plane, la...) 10 cm, à une fréquence de 10 GHz (bande X)

Le diagramme (Un diagramme est une représentation visuelle simplifiée et structurée des concepts, des idées, des constructions, des relations, des données statistiques, de l'anatomie etc....) de droite donne l'allure de l'évolution de la puissance de l'onde, normalisée par rapport à la puissance maximale émise, en fonction du site et du gisement (échelle logarithmique). On voit apparaître un pic central qui représente le lobe principal du radar, ainsi que des pics secondaires représentant des lobes secondaires. Ici, l'antenne a pour dimensions 20 cm par 10 cm, ce qui a pour avantage de rendre les lobes bien visibles; dans la réalité, il peut être désirable d'avoir des antennes plus grandes pour avoir un lobe principal plus fin (de l'ordre du degré). La majeure partie de l'énergie émise ou reçue par une antenne vient du lobe principal; en particulier, si un signal réfléchi est reçu par l'antenne, il y aura une forte probabilité (La probabilité (du latin probabilitas) est une évaluation du caractère probable d'un évènement. En mathématiques, l'étude des probabilités est un sujet de grande importance donnant lieu à de nombreuses...) pour que la cible se trouve dans la direction donnée (Dans les technologies de l'information, une donnée est une description élémentaire, souvent codée, d'une chose, d'une transaction, d'un événement, etc.) par le lobe principal. On désire cependant réduire les lobes secondaires le plus possible, car ils ne sont pas négligeables. La réduction des lobes secondaires peut être réalisée, par exemple, en s'arrangeant pour que l'illumination du réflecteur ne soit plus constante, mais importante au centre et doucement décroissante aux bords.

Si θ = 0, l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être...) des angles pour lesquels la puissance est au moins égale à la moitié de la puissance maximale correspond aux angles donnant un argument supérieur à \tfrac1\sqrt2 dans le premier sinus cardinal; numériquement, l'ouverture angulaire Rφ de ce domaine vaut, pour de petites ouvertures:

R_\phi \approx  0,886\frac{\lambda}{L}

Il vient une relation similaire si \, \phi=0, en remplaçant l par L. On voit que pour réduire l'ouverture angulaire de l'antenne, il y a deux méthodes:

  • soit augmenter la taille de l'antenne
  • soit diminuer la longueur d'onde / monter en fréquence

La popularité des antennes à ouverture décroît en 2008 en faveur des antennes patch (Le mot patch est un anglicisme qui à l'origine désigne un morceau de tissu. Il est également employé pour parler d'une rustine de chambre à air. En français, on le...) et des antennes à fentes (surtout dans le domaine civil), sauf dans quelques applications où la puissance à l'émission est importante; cependant, la théorie (Le mot théorie vient du mot grec theorein, qui signifie « contempler, observer, examiner ». Dans le langage courant, une théorie est une idée ou une connaissance spéculative, souvent basée sur...) n'est pas très différente et les résultats énoncés ci-dessus restent valides qualitativement.

Guide d'ondes à fentes

Guide d'onde à fentes

En général, le signal venant de l'émetteur se déplace dans un guide d'onde dans l'antenne émettrice. Il est cependant possible de transformer le guide d'onde lui-même en antenne en y perçant des fentes. L'interférence (En mécanique ondulatoire, on parle d'interférences lorsque deux ondes de même type se rencontrent et interagissent l'une avec l'autre. Ce phénomène apparaît souvent en optique avec les ondes lumineuses, mais il...) entre les différentes fentes crée en effet un patron de diffusion (Dans le langage courant, le terme diffusion fait référence à une notion de « distribution », de « mise à disposition » (diffusion...) avec un pic central intense et des pics secondaires plus faibles dans la direction selon laquelle sont dirigées les fentes. On obtient ainsi un faisceau radar directionnel semblable à celui d'une antenne parabolique.

Ce type d'antenne a une bonne résolution selon son axe, mais aucune dans l'axe perpendiculaire (En géométrie plane, on dit que deux droites sont perpendiculaires quand elles se coupent en formant un angle droit. Le terme de perpendiculaire vient du latin per-pendiculum (fil à plomb) et justifie la généralisation de la notion de...). Il suffit ensuite de faire tourner mécaniquement le guide d'onde ainsi troué sur 360 degrés pour obtenir un balayage de l'horizon (Conceptuellement, l’horizon est la limite de ce que l'on peut observer, du fait de sa propre position ou situation. Ce concept simple se décline en physique, philosophie,...). Ce type d'antenne est particulièrement utilisé dans les cas où on ne s'intéresse qu'à ce qui se trouve dans le plan balayé sans nécessiter une très grande précision. C'est ce type d'antennes que l'on voit sur les navires, le long des pistes des aéroports et dans les ports et qui ressemblent à de longs haut-parleurs placés horizontalement et en rotation sur un mât (Le mât est un espar vertical (mis à part le beaupré) servant à soutenir les voiles sur un bateau à voiles. De manière générale, c'est un pylône vertical.). Ils sont très économiques et moins affectés par le vent (Le vent est le mouvement d’une atmosphère, masse de gaz située à la surface d'une planète. Les vents les plus violents connus ont lieu sur Neptune et sur Saturne. Il est essentiel à tous les phénomènes...) que d'autres types d'antenne.

Antennes patch

Les antennes patch sont constituées d'un circuit imprimé (Le circuit imprimé est un support, généralement une plaque, destiné à regrouper des composants électroniques, afin de réaliser un système...) double face métallisé. Elles ont l'avantage d'être très peu onéreuses, légères et très flexibles à l'utilisation. Pour cela, elles trouvent souvent un usage pour les applications d'imagerie (L’imagerie consiste d'abord en la fabrication et le commerce des images physiques qui représentent des êtres ou des choses. La fabrication se faisait jadis soit à la main, soit par...) à antenne synthétique où elles peuvent être montées de manière conforme sur la coque d'un avion, d'un drone (Un drone ("faux bourdon" en anglais) ; ou UAV (Unmanned Aerial Vehicle) est un aéronef sans pilote humain à bord. Il emporte une charge utile destinée, le plus souvent, à des missions de type surveillance,...), ou embarquées sur un satellite (Satellite peut faire référence à :). Le radar français RAMSES (Radar Aéroporté Multi-Spectral d'Étude des Signatures) utilise par exemple une telle technologie.. Les résultats démontrés pour les antennes à ouverture restent qualitativement valides pour les antennes patch, c'est-à-dire l'ouverture angulaire diminue quand la dimension (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur, ou bien son diamètre si c'est une pièce de révolution.) de l'antenne augmente et la longueur d'onde diminue.

Antennes réseau à commande de phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :)

Radar tridimensionnel à balayage électronique géant en Alaska

Une autre méthode utilisée pour diffuser le faisceau radar est celui des antennes réseau à commande de phase. Dans ce système, on divise le guide d'onde venant de l'émetteur en un très grand nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) de sous-guides d'onde. Ces derniers se terminent chacun par une fente sur une plaque faisant face à une direction. En contrôlant la phase de l'onde passant dans chacune de ces fentes, on peut créer un patron d'interférences qui donne une émission dans une direction particulière. On peut changer la direction vers laquelle l'antenne émet sans avoir à bouger celle-ci : il n'y a qu'à changer l'arrangement (La notion d'arrangement est utilisée en probabilités, et notamment pour les dénombrements en analyse combinatoire.) des phases des fentes.

Comme le changement de l'arrangement se fait électroniquement, on peut procéder à un balayage de l'horizon et de la verticale (La verticale est une droite parallèle à la direction de la pesanteur, donnée notamment par le fil à plomb.) en un temps beaucoup plus rapide que ne le ferait une antenne parabolique en rotation mécanique (Dans le langage courant, la mécanique est le domaine des machines, moteurs, véhicules, organes (engrenages, poulies, courroies, vilebrequins, arbres de transmission, pistons, ...), bref, de...). On peut même arranger le patron d'émission de telle sorte qu'on ait deux faisceaux, ce qui créer deux radars virtuels. Cependant, le faisceau n'est pas très précis dans la direction rasant la plaque et c'est pourquoi on arrange généralement trois ou quatre plaques de ce type dans des directions différentes pour couvrir tout le volume autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres Erythrotriorchis, Kaupifalco, Megatriorchis,...) du radar. Ceci donne un radar tridimensionnel à balayage électronique.

Les antennes réseau à commande de phase ont été utilisées en premier durant la Seconde Guerre mondiale mais les limitations de l'électronique du temps n'ont pas permis d'avoir des résultats de bonne résolution. Durant la Guerre froide, un grand effort a été fourni (Les Foúrnoi Korséon (Grec: Φούρνοι Κορσέων) appelés plus communément Fourni,...) pour leur développement, car les cibles très rapides comme les avions de chasse et les missiles se déplacent trop rapidement pour être suivis par les systèmes conventionnels. Elles sont le cœur du système de combat Aegis des navires de guerre et du système anti-missiles Patriot. Elles sont de plus en plus utilisées, malgré leur coût important, dans d'autres domaines où la vitesse de sondage et l'encombrement sont critiques, comme à bord des avions de chasse. Dans ces derniers, elles sont très appréciées pour leur capacité à suivre plusieurs cibles. Elles y furent introduites en premier dans le Mikoyan MiG-31. Son antenne à commande de phase, la Zaslon SBI-16, est considérée comme la plus puissante des antennes pour avions de chasse.

Avec la baisse du prix des pièces électroniques, ce genre d'antennes se répand de plus en plus. Presque tous les systèmes militaires de radar utilisent ce concept, car le coût additionnel est facilement compensé par sa polyvalence et sa fiabilité (Un système est fiable lorsque la probabilité de remplir sa mission sur une durée donnée correspond à celle spécifiée dans le cahier des charges.) (moins de pièces mobiles). L'antenne réseau à commande de phase pour radar se retrouve également dans les satellites et on procède même à des essais au National Weather Service américain pour son utilisation dans les radars météorologiques. L'antenne parabolique est encore utilisée dans l'aviation générale (L'aviation générale est un terme générique qui regroupe toutes les activités aériennes civiles autres que le transport commercial : aviation sportive...) et les autres utilisations civiles mais cela pourrait changer si les coûts continuent à décliner.

On distingue généralement les antennes à balayage électroniques actives des antennes à balayage électronique passives. Dans le cas des antennes à balayage électronique passives, une seule source génère l'onde, qui est ensuite déphasée de manière adéquate pour chacun des éléments radiatifs de l'antenne. Dans les antennes à balayage électronique actives, l'antenne est en réalité un ensemble de plusieurs (1000 à 1500, typiquement) sous-antennes indépendantes les unes des autres et disposant chacune de leur source propre. L'avantage de cette dernière approche est de pouvoir assurer le fonctionnement du système après reconfiguration même si l'une des sous-antennes est défectueuse. Le radar RBE-2 qui équipe le chasseur français Rafale est un exemple de radar à balayage électronique à antenne passive. Le radar AN/APG 77 équipant le chasseur américain F-22 est équipé d'antennes actives.

Antenne synthétique

Comme son nom l'indique, il ne s'agit pas à proprement parler d'une antenne physique, mais d'un traitement appliqué au signal brut reçu par le radar, en fin de chaîne (Le mot chaîne peut avoir plusieurs significations :). En utilisant une antenne sur un porteur (avion ou satellite) en mouvement, on réalise la sommation cohérente du signal reçu correspondant à un même point de l'espace, sur plusieurs instants successifs, en s'arrangeant pour que l'objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être désigné par une étiquette verbale. Il est défini par les relations...) reste dans le lobe principal de l'antenne sur cette durée. Cette sommation augmente artificiellement la résolution de l'image, sans pour autant devoir augmenter la taille physique de l'antenne. Cette solution a un intérêt certain pour des radars embarqués sur satellite (Satellite peut faire référence à :) ou sur avion, car elle permet d'avoir de bonnes performances pour un poids (Le poids est la force de pesanteur, d'origine gravitationnelle et inertielle, exercée par la Terre sur un corps massique en raison uniquement du voisinage de la Terre. Elle est égale à l'opposé de la...) et un encombrement minimes.

Réfrigérant de radar

Le coolanol et le PAO (poly alpha olefin) sont les deux principaux réfrigérants utilisés dans les radar aéroportés. La U.S. Navy ayant institué un programme anti-pollution pour réduire les déchets toxiques, le Coolanol est moins en usage depuis quelques années. Le PAO est un lubrifiant synthétique composé d'esters de polyol, d'anti-oxydants, d'inhibiteurs de rouille et de triazole un "yellow metal pacifier".

Page générée en 0.531 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique