Un radar est formé de différentes composantes:
Dans la plupart des cas, l'émetteur et le récepteur du radar partagent une électronique et une antenne commune. On parle alors de radar monostatique. Rien n'empêche cependant de considérer un système radar où l'émetteur et le récepteur sont séparés; on parle alors de radar bistatique, ou même de configuration multistatique, si l'on a un émetteur et plusieurs récepteurs distincts. L'une et l'autre configuration offrent des avantages et des inconvénients:
Lorsque l'on parle de radar bistatique, on suppose implicitement que l'émetteur et le récepteur sont réellement séparés (soit du point de vue de la distance, soit d'un point de vue angulaire). Si l'émetteur et le récepteur sont distincts physiquement (antennes différentes) mais situés presque au même endroit, le signal reçu est qualitativement proche d'un signal monostatique. On parle ainsi de configurations fortement bistatiques ou faiblement bistatiques pour intégrer ces deux possibilités.
L'émetteur au site du radar comprend: un oscillateur permanent, un amplificateur et un modulateur. Pour les radars à hyperfréquences, qui forment l'immense majorité des radars en service, la génération d'impulsions courtes et très énergétiques demande une technologie qui est différente de celle, disons, d'un émetteur radio utilisé en télécommunications. Ainsi, la génération de l'onde se fait de la manière suivante:
La fréquence est principalement choisie en fonction de l'application visée. De manière générale, une grande longueur d'onde (bandes HF) permettra de profiter des phénomènes de propagation et de rebond sur l'ionosphère, ce qui permet de porter à des milliers de kilomètres (cas des radar trans-horizon). D'autre part, seuls les objets dont la taille typique est au moins de l'ordre de grandeur de la longueur d'onde sont visibles. Par exemple, une forêt sera partiellement transparente pour les grandes longueurs d'ondes (seuls les troncs d'arbres sont visibles); tandis que la forêt sera opaque en bande X (seule la canopée sera visible), car la longueur d'onde est de l'ordre de la taille des feuilles et des branches. La taille de l'antenne influe également sur la longueur d'onde à utiliser (et réciproquement).
Les bandes de fréquences civiles et militaires sont allouées de manière internationale au sein de la Conférence Mondiale des Radiocommunications réunie tous les trois ans au sein de l'Union Internationale des Télécommunications (prochaine conférence en 2010), avec également la participation d'organismes internationaux comme l'OTAN. Les demandes de bande doivent être déposées longtemps à l'avance dans la mesure où les ordres du jour des conférences sont généralement fixées plusieurs années à l'avance. D'autre part, au sein d'un pays, les institutions régaliennes peuvent s'arroger des bandes de fréquence pour l'utilisation exclusive des forces militaires ou de police. Toutefois, ces institutions subissent des pressions de plus en plus importantes de la part des industriels dans la mesure où les nouvelles technologies civiles (GSM, Wi-Fi, etc) ont une occupation spectrale grandissante, mais offrant un profit financier très large. L'heure est donc à la coopération entre les différents acteurs et à une cohabitation (pas toujours très réussie) de manière à limiter les brouillages entre les différentes applications. Toujours est-il que la bande de fréquence la plus adaptée d'un point de vue applicatif n'est pas toujours disponible et qu'il faut souvent trouver un compromis.
Le nom des plages de fréquences utilisées dans le monde des radars provient de la Seconde Guerre mondiale. En effet, pour garder secret le développement de ce système, les militaires ont décidé de donner à ces plages des noms de code qui sont demeurés en usage depuis. Ils ont été adoptés aux États-Unis par le Institute of electrical and electronics engineers (IEEE) et internationalement par l’Union internationale des télécommunications. Cependant, certains utilisateurs des bandes radios, comme les télédiffuseurs et l’industrie des contre-mesures militaires, ont remplacé les vocables traditionnels par leur propre identification.
Nom de bande | Plage de fréquences | Longueurs d’onde | Commentaires |
---|---|---|---|
HF | 3-30 MHz | 10-100 m | Pour high frequency (haute fréquence). Utilisée par les radars côtiers et les radars “au-delà de l’horizon”. |
P | < 300 MHz | 1 m+ | Pour précédent : appliquée a posteriori aux radars primitifs |
VHF | 50-330 MHz | 0.9-6 m | Pour very high frequency (très haute fréquence). Utilisée par les radars à très longue portée et par ceux à pénétration de sol. |
UHF | 300-1000 MHz | 0.3-1 m | Pour ultra high frequency (ultra haute fréquence). Radars à très longue portée (ex. détection de missiles balistiques), pénétration de sol et de feuillage. |
L | 1-2 GHz | 15-30 cm | Pour long. Utilisée pour le contrôle aérien de longue portée et la surveillance aérienne, le GPS (et donc les radars passifs se basant dessus). |
S | 2-4 GHz | 7.5-15 cm | Pour short (court). Utilisée par les radars de trafic aérien local, les radars météorologiques et navals. |
C | 4-8 GHz | 3.75-7.5 cm | Compromis entre les bandes S et X pour les transpondeurs satellitaires et les radars météorologiques. |
X | 8-12 GHz | 2.5-3.75 cm | Pour les radars météorologiques, les autodirecteurs de missiles, les radars de navigation, les radars à résolution moyenne de cartographie et la surveillance au sol des aéroports. |
Ku | 12-18 GHz | 1,67-2,5 cm | Fréquence juste sous K (indice 'u' pour under en anglais) pour les radars de cartographie à haute résolution et l'altimétrie satellitaire. |
K | 18-27 GHz | 1,11-1,67 cm | De l’Allemand kurz(court). Très absorbées par la vapeur d’eau, Ku et Ka sont utilisées pour la détection des gouttelettes de nuages en météorologie et dans les radars routiers (24.150 ± 0.100 GHz) manuels. |
Ka | 27-40 GHz | 0.75-1.11 cm | Fréquence juste au-dessus de K (indice 'a' pour "above" en anglais) pour la cartographie, la courte portée, la surveillance au sol des aéroports, les radars routiers (34.300 ± 0.100 GHz) automatisés, et les radars anti-collision montés sur les voitures haut de gamme. |
mm | 40-300 GHz | 1 - 7,5 mm | Bande millimétrique subdivisée en quatre parties : |
Q | 40-60 GHz | 5 mm - 7,5 mm | Utilisée pour les communications militaires. |
V | 50-75 GHz | 6.0 - 4 mm | Très fortement absorbée par l'atmosphère. |
E | 60-90 GHz | 6.0 - 3,33 mm | |
W | 75-110 GHz | 2.7 - 4.0 mm | Utilisée comme radar anti-collisions automobile et pour l'observation météorologique à haute résolution et de courte portée. |
En toute généralité, une antenne (radio ou radar) peut être vue comme un transducteur:
Cette conversion d'énergie ne se fait pas sans pertes; ainsi, une antenne est caractérisée par un coefficient de rendement entre 0 et 1, que l'on souhaite être le plus élevé possible.
Si l'on désire utiliser le radar pour localiser une cible, il faut concevoir l'antenne de manière à ce qu'elle ne reçoive les ondes ne provenant que d'une direction privilégiée; cette opération a également un effet secondaire bénéfique dans la mesure où l'antenne aura une meilleure portée tant en réception qu'en émission dans cette direction. L'antenne est donc également caractérisée par sa directivité et son "gain" maximal.
On verra plus loin dans ce paragraphe que la directivité de l'antenne est influencée par la longueur d'onde du signal émis et des dimensions de l'antenne; dans certaines applications (radar embarqué sur avion ou satellite), les dimensions de l'antenne peuvent être une contrainte forte qui doit donc également être considérée.
Pour des raisons techniques (le magnétron n'étant pas encore pas totalement maîtrisé), les premiers radars de la Seconde Guerre mondiale travaillaient à des fréquences basses pour lesquelles il était commode d'utiliser des antennes filaires. Ces antennes sont bien connues du grand public car leur forme n'est à la base pas différente de celle des antennes de nos postes radio ou de nos télévisions. En fonction de l'agencement des brins composant l'antenne, il est possible d'obtenir une antenne plus ou moins directive. Une antenne monobrin sera omnidirectionnelle dans le plan médian de l'antenne; au contraire, une antenne Yagi est très directive dans son axe principal. Cette dernière est la célèbre "antenne râteau" qui est typiquement utilisée en télévision.
Plusieurs possibilités d'utilisations ont été explorées au cours du temps. Ainsi, le système "Chain Home" britannique durant la Seconde Guerre mondiale, était formé d'antennes dipolaires qui émettaient de façon omni-directionnelle, et d'antennes réceptrices directionnelles. Ces dernières étaient formées de deux antennes dipolaires placées à angle droit. En effet, pour une antenne dipolaire, la réception est maximale à angle droit de la source d'échos, et minimale lorsque l'antenne pointe sa direction. L'opérateur radar peut donc déterminer la direction du signal en tournant les antennes pour déterminer ce doublet max/min des affichages de ses deux antennes. Les premiers radars aéroportés, comme le radar allemand Lichtenstein de la Seconde Guerre mondiale étaient souvent formés de réseaux d'antennes Yagi montés sur le nez de l'avion. Ces antennes ajoutaient une traînée supplémentaire à l'avion, ce qui n'est généralement pas désirable ; or il n'était pas possible d'utiliser des antennes moins encombrantes, car celles-ci n'étaient pas adaptées à la fréquence basse qui était alors utilisée.
Les antennes filaires restent utilisées de nos jours pour les radars à "basse" fréquence (en dessous de quelques centaines de mégahertz, mais il n'y a pas de limite exacte).
Pour les radars à hyperfréquences, un type classique d'antenne est l'antenne à ouverture. Cette antenne fonctionne de la manière suivante:
Si le « réflecteur » est de forme parabolique, et si le cornet est situé au foyer de la parabole, alors les rayons réfléchis par la surface repartiront grosso modo de manière parallèle vers l'infini dans la direction x, tout comme l'ampoule d'un phare de voiture est située au foyer d'un réflecteur parabolique métallisé qui réfléchit les rayons lumineux loin sur la route.
Toutefois, à la différence du phare de voiture, la taille de la surface formant le réflecteur est relativement petite devant la longueur d'onde du signal émis et il n'est alors pas possible de négliger les phénomènes de diffraction. Chaque point de la surface du réflecteur va rayonner comme une source ponctuelle, et le champ total émis en un point est la somme cohérente de tous les champs infinitésimaux. Tout se passe comme dans le cas de la diffraction d'une onde par une ouverture. Afin de mieux sentir la physique du phénomène, considérons le cas idéalisé suivant:
Soit à mesurer l'amplitude de l'onde émise dans une direction repérée par les angles φ (angle azimutal horizontal ou gisement) et θ (angle d'élévation ou de site), et mesurée à une distance r de l'antenne suffisamment grande pour que l'approximation de Fraunhofer soit vérifée. La théorie de la diffraction montre que celle-ci vaut :
Dans cette expression, sinc est la fonction sinus cardinal définie par sin(x) / x. L'amplitude maximale est obtenue sur l'axe X.
Le diagramme de droite donne l'allure de l'évolution de la puissance de l'onde, normalisée par rapport à la puissance maximale émise, en fonction du site et du gisement (échelle logarithmique). On voit apparaître un pic central qui représente le lobe principal du radar, ainsi que des pics secondaires représentant des lobes secondaires. Ici, l'antenne a pour dimensions 20 cm par 10 cm, ce qui a pour avantage de rendre les lobes bien visibles; dans la réalité, il peut être désirable d'avoir des antennes plus grandes pour avoir un lobe principal plus fin (de l'ordre du degré). La majeure partie de l'énergie émise ou reçue par une antenne vient du lobe principal; en particulier, si un signal réfléchi est reçu par l'antenne, il y aura une forte probabilité pour que la cible se trouve dans la direction donnée par le lobe principal. On désire cependant réduire les lobes secondaires le plus possible, car ils ne sont pas négligeables. La réduction des lobes secondaires peut être réalisée, par exemple, en s'arrangeant pour que l'illumination du réflecteur ne soit plus constante, mais importante au centre et doucement décroissante aux bords.
Si θ = 0, l'ensemble des angles pour lesquels la puissance est au moins égale à la moitié de la puissance maximale correspond aux angles donnant un argument supérieur à
Il vient une relation similaire si
La popularité des antennes à ouverture décroît en 2008 en faveur des antennes patch et des antennes à fentes (surtout dans le domaine civil), sauf dans quelques applications où la puissance à l'émission est importante; cependant, la théorie n'est pas très différente et les résultats énoncés ci-dessus restent valides qualitativement.
En général, le signal venant de l'émetteur se déplace dans un guide d'onde dans l'antenne émettrice. Il est cependant possible de transformer le guide d'onde lui-même en antenne en y perçant des fentes. L'interférence entre les différentes fentes crée en effet un patron de diffusion avec un pic central intense et des pics secondaires plus faibles dans la direction selon laquelle sont dirigées les fentes. On obtient ainsi un faisceau radar directionnel semblable à celui d'une antenne parabolique.
Ce type d'antenne a une bonne résolution selon son axe, mais aucune dans l'axe perpendiculaire. Il suffit ensuite de faire tourner mécaniquement le guide d'onde ainsi troué sur 360 degrés pour obtenir un balayage de l'horizon. Ce type d'antenne est particulièrement utilisé dans les cas où on ne s'intéresse qu'à ce qui se trouve dans le plan balayé sans nécessiter une très grande précision. C'est ce type d'antennes que l'on voit sur les navires, le long des pistes des aéroports et dans les ports et qui ressemblent à de longs haut-parleurs placés horizontalement et en rotation sur un mât. Ils sont très économiques et moins affectés par le vent que d'autres types d'antenne.
Les antennes patch sont constituées d'un circuit imprimé double face métallisé. Elles ont l'avantage d'être très peu onéreuses, légères et très flexibles à l'utilisation. Pour cela, elles trouvent souvent un usage pour les applications d'imagerie à antenne synthétique où elles peuvent être montées de manière conforme sur la coque d'un avion, d'un drone, ou embarquées sur un satellite. Le radar français RAMSES (Radar Aéroporté Multi-Spectral d'Étude des Signatures) utilise par exemple une telle technologie.. Les résultats démontrés pour les antennes à ouverture restent qualitativement valides pour les antennes patch, c'est-à-dire l'ouverture angulaire diminue quand la dimension de l'antenne augmente et la longueur d'onde diminue.
Une autre méthode utilisée pour diffuser le faisceau radar est celui des antennes réseau à commande de phase. Dans ce système, on divise le guide d'onde venant de l'émetteur en un très grand nombre de sous-guides d'onde. Ces derniers se terminent chacun par une fente sur une plaque faisant face à une direction. En contrôlant la phase de l'onde passant dans chacune de ces fentes, on peut créer un patron d'interférences qui donne une émission dans une direction particulière. On peut changer la direction vers laquelle l'antenne émet sans avoir à bouger celle-ci : il n'y a qu'à changer l'arrangement des phases des fentes.
Comme le changement de l'arrangement se fait électroniquement, on peut procéder à un balayage de l'horizon et de la verticale en un temps beaucoup plus rapide que ne le ferait une antenne parabolique en rotation mécanique. On peut même arranger le patron d'émission de telle sorte qu'on ait deux faisceaux, ce qui créer deux radars virtuels. Cependant, le faisceau n'est pas très précis dans la direction rasant la plaque et c'est pourquoi on arrange généralement trois ou quatre plaques de ce type dans des directions différentes pour couvrir tout le volume autour du radar. Ceci donne un radar tridimensionnel à balayage électronique.
Les antennes réseau à commande de phase ont été utilisées en premier durant la Seconde Guerre mondiale mais les limitations de l'électronique du temps n'ont pas permis d'avoir des résultats de bonne résolution. Durant la Guerre froide, un grand effort a été fourni pour leur développement, car les cibles très rapides comme les avions de chasse et les missiles se déplacent trop rapidement pour être suivis par les systèmes conventionnels. Elles sont le cœur du système de combat Aegis des navires de guerre et du système anti-missiles Patriot. Elles sont de plus en plus utilisées, malgré leur coût important, dans d'autres domaines où la vitesse de sondage et l'encombrement sont critiques, comme à bord des avions de chasse. Dans ces derniers, elles sont très appréciées pour leur capacité à suivre plusieurs cibles. Elles y furent introduites en premier dans le Mikoyan MiG-31. Son antenne à commande de phase, la Zaslon SBI-16, est considérée comme la plus puissante des antennes pour avions de chasse.
Avec la baisse du prix des pièces électroniques, ce genre d'antennes se répand de plus en plus. Presque tous les systèmes militaires de radar utilisent ce concept, car le coût additionnel est facilement compensé par sa polyvalence et sa fiabilité (moins de pièces mobiles). L'antenne réseau à commande de phase pour radar se retrouve également dans les satellites et on procède même à des essais au National Weather Service américain pour son utilisation dans les radars météorologiques. L'antenne parabolique est encore utilisée dans l'aviation générale et les autres utilisations civiles mais cela pourrait changer si les coûts continuent à décliner.
On distingue généralement les antennes à balayage électroniques actives des antennes à balayage électronique passives. Dans le cas des antennes à balayage électronique passives, une seule source génère l'onde, qui est ensuite déphasée de manière adéquate pour chacun des éléments radiatifs de l'antenne. Dans les antennes à balayage électronique actives, l'antenne est en réalité un ensemble de plusieurs (1000 à 1500, typiquement) sous-antennes indépendantes les unes des autres et disposant chacune de leur source propre. L'avantage de cette dernière approche est de pouvoir assurer le fonctionnement du système après reconfiguration même si l'une des sous-antennes est défectueuse. Le radar RBE-2 qui équipe le chasseur français Rafale est un exemple de radar à balayage électronique à antenne passive. Le radar AN/APG 77 équipant le chasseur américain F-22 est équipé d'antennes actives.
Comme son nom l'indique, il ne s'agit pas à proprement parler d'une antenne physique, mais d'un traitement appliqué au signal brut reçu par le radar, en fin de chaîne. En utilisant une antenne sur un porteur (avion ou satellite) en mouvement, on réalise la sommation cohérente du signal reçu correspondant à un même point de l'espace, sur plusieurs instants successifs, en s'arrangeant pour que l'objet reste dans le lobe principal de l'antenne sur cette durée. Cette sommation augmente artificiellement la résolution de l'image, sans pour autant devoir augmenter la taille physique de l'antenne. Cette solution a un intérêt certain pour des radars embarqués sur satellite ou sur avion, car elle permet d'avoir de bonnes performances pour un poids et un encombrement minimes.
Le coolanol et le PAO (poly alpha olefin) sont les deux principaux réfrigérants utilisés dans les radar aéroportés. La U.S. Navy ayant institué un programme anti-pollution pour réduire les déchets toxiques, le Coolanol est moins en usage depuis quelques années. Le PAO est un lubrifiant synthétique composé d'esters de polyol, d'anti-oxydants, d'inhibiteurs de rouille et de triazole un "yellow metal pacifier".