Les donnant E et p en fonction de m et v conduisent immédiatement à la formule
Si la vitesse de la particule est égale à la vitesse de la lumière, alors p = E / c en calculant E2 − p2c2 on voit que la masse de la particule est forcément nulle. En sens inverse, si la masse de la particule est nulle, alors p = E / c et par conséquent v = c.
Nous aboutissons donc à la conclusion double importante selon laquelle les particules matérielles ne peuvent pas atteindre la vitesse de la lumière et que seules des particules sans masse se déplacent à la vitesse de la lumière.
L'ensemble est parfaitement cohérent : tout mécanisme de propagation d'énergie à la vitesse de la lumière correspond à une quantité de mouvement p égale à l'énergie et donc à une « masse au repos » nulle. En sens inverse, une particule de masse nulle se déplace forcément à la vitesse de la lumière.
La conservation du quadrivecteur énergie-impulsion explique que dans une réaction la masse d'un système puisse ne pas se conserver pour se transformer en énergie, en partie ou en totalité. C'est ce qui se passe dans les réactions de fission, de fusion et d'annihilation de particules.
Supposons qu'un corps au repos, de masse M, se désintègre spontanément en deux parties de masses (masses au repos) respectives
La loi de conservation de l'énergie donne car
, et donc
.
Dans le cas où
La loi de conservation de l'impulsion donne
Finalement, les égalités
On peut également calculer la norme des impulsions des deux particules, et donc aussi de leurs vitesses.
Une fission de particule implique aussi la conservation de nombres quantiques : la charge électrique, le spin, etc.
Dans l'espace newtonien à trois dimensions, une particule de charge q placée dans un champ électrique
Pour transposer cette formule en mécanique relativiste, on devra considérer le quadrivecteur énergie-impulsion
Dans cette expression
De façon explicite l'équation ci-dessus se décompose sur les trois axes de la façon suivante :
De son côté la composante temporelle de l'équation de la dynamique (qui correspond à la loi donnant la variation de l'énergie) s'écrit
où W est le travail de la force
En rassemblant les équations écrites ci-dessus dans le cadre d'un espace-temps à quatre dimensions, le taux de variation du quadrivecteur énergie-impulsion est donné par
L'équation matricielle que nous venons d'écrire montre qu'en relativité restreinte le champ magnétique et le champ électrique constituent une entité unique. En réalité la présentation précédente est quelque peu incorrecte dans la mesure où pour tirer parti de toute la puissance de la théorie relativiste il est nécessaire de faire appel aux tenseurs. L'équation matricielle ci-dessus est la traduction en termes de composantes de l'équation tensorielle, indépendante, elle, de tout système de coordonnées