Synchronisation des horloges dans les repères tournants dans le cadre de la relativité restreinte.
Comment on synchronise les horloges en relativité restreinte.
Soit un repère inertiel R avec une origine O. On dispose en chaque point du repère une horloge immobile dans R (ce qui se vérifie aisément en plaçant des règles étalons et en vérifiant que les coordonnées spatiales de l'horloge ne varient pas au cours du temps).
On choisit ensuite une horloge de référence, par exemple celle située en O. On envoie alors un signal a vitesse connue V à l'instant t0 indiqué par l'horloge en O. Si ce signal atteint l'horloge située à la distance L, alors on règle cette horloge pour qu'elle indique à l'instant de la réception le temps t0 + L / V.
On vérifie facilement que cette procédure de synchronisation est consistante (absence de contradiction en changeant d'horloge de référence ou de vitesse du signal) tant que l'on est dans un espace-temps plat.
Peut importe la vitesse du signal tant qu'elle est connue. Et elle se détermine aisément en la mesurant sur un aller-retour.
La vitesse du signal pourrait malgré tout être affectée d'une anisotropie gênante et indécelable sur une mesure aller-retour. Pour être sûr, il faut effectuer un grand nombre de mesures dans toutes les directions. Il reste éventuellement encore une anisotropie résiduelle qui pourrait s'avérer indétectable quelles que soient les mesures. Mais dans ce cas elle n'a pas de conséquence physique puisque justement elle est indétectable.
C'est pour ces raisons que l'on emploie habituellement un signal électromagnétique (de la lumière, par exemple) dans le vide, se propageant à la vitesse c. Sa constance, son invariance et son isotropie sont garanties par :
Elle est aussi d'un usage très pratique aussi bien dans les expériences réelles que dans les expériences de pensées.
Cette procédure utilisant un signal à vitesse c est aussi appelée synchronisation d'Einstein.
Nous allons maintenant tenter de synchroniser les horloges sur le disque en rotation.
Pour cela, il faut également rendre une série d'événements simultanés. Reprenons la procédure de la section précédente.
On fait la même hypothèse de choix des événements : A et B simultanés pour un observateur situé en 1 immobile dans R, B et C pour un observateur situé en 2 immobile dans R, C et D pour 3, D et A pour 4.
Considérons maintenant les observateurs situés en 1, 2, 3 et 4 mais dans le repère R' en rotation.
Les vitesses dans le repère inertiel R des différents observateurs sont indiquées dans la figure ci-dessus. Les vitesses de 1 et 2, qui sont différentes, montrent (en utilisant les transformations de Lorentz) que, pour 2, A se produit avant B. C'est simplement ce que nous connaissons en relativité restreinte : la simultanéité est relative.
De même, pour 3, B se produit avant C, pour 4, C avant D et, pour 1, D avant A.
Si nous essayons de synchroniser nos horloges, nous aurons donc, dans un repère R' global, que A se produit avant B qui se produit avant C qui se produit avant D qui se produit avant A
Cette contradiction montre qu'il est impossible de synchroniser, dans R', les 4 horloges des observateurs 1 à 4 de manière cohérente en utilisant la procédure de la relativité restreinte. Il est tout bonnement impossible de synchroniser les horloges dans un repère tournant avec les procédures de la relativité restreinte, au moins globalement sur toute la circonférence et en respectant le principe de relativité.
Cela à deux implications importantes :
En plus, le raisonnement précédant montre qu'en faisant le tour du disque en rotation, on observe un "Time Gap". C’est-à-dire une discontinuité dans le temps (dans la synchronisation des horloges). Si, sur le disque tournant, on déplace lentement une horloge (à vitesse très faible devant V et c) et que l'on fait le tour complet, on devrait observer un décalage entre l'horloge restée au point de départ et celle ayant fait le tour. C'est une conséquence directe des décalages successifs entre les synchronisations de A à B, de B à C, etc. au fur et à mesure que l'horloge parcourt l'ensemble des observateurs du disque.
Les calculs peuvent être faits rigoureusement, mais cela donne un indice sur l'origine du décalage des signaux dans l'effet Sagnac. Il pourrait s'agir de ce Time Gap qui aurait en plus l'avantage d'être universel (le raisonnement ci-dessus ne fait pas intervenir la vitesse d'un éventuel signal autour du disque, les procédures de synchronisation en relativité restreinte pouvant se faire avec tout signal à vitesse connue, comme nous l'avons vu ci-dessus).
Contrairement au cas des accélérations linéaires, il n'est pas possible de s'en sortir par une astuce analogue (avoir une accélération non uniforme) pour deux raisons :
Le cas des repères en rotation est donc particulièrement épineux.