Recherchez sur tout Techno-Science.net
       
Techno-Science.net : Suivez l'actualité des sciences et des technologies, découvrez, commentez
 A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | +
Atome

Historique des modèles de l'atome

Dans l'histoire des sciences, plusieurs modèles de l'atome ont été développés, au fur et à mesure des découvertes des propriétés de la matière. Aujourd'hui encore, on utilise plusieurs modèles différents ; en effet, le modèle le plus récent est assez complexe, l'utilisation de modèles « anciens » ou partiellement faux, mais plus simples, facilite la compréhension, donc l'apprentissage (L’apprentissage est l'acquisition de savoir-faire, c'est-à-dire le processus d’acquisition de pratiques, de connaissances, compétences, d'attitudes ou de valeurs culturelles, par l'observation, l'imitation,...) et la réflexion.

Depuis l'antiquité grecque, on supposait que la matière (La matière est la substance qui compose tout corps ayant une réalité tangible. Ses trois états les plus communs sont l'état solide, l'état...) pouvait se fractionner en petits morceaux jusqu'à obtenir des grains insécables, qu'elle était comme « de la poussière dans la lumière ». C'est avec l'expérience de Rutherford (L'expérience de Rutherford fut menée en 1911, et montra que la partie chargée positivement de la matière (que l'on appelle maintenant le noyau atomique) était concentrée en de petits points.) que l'on atteint enfin ce grain : les particules alpha, en traversant la matière, voient leur trajectoire (La trajectoire est la ligne décrite par n'importe quel point d'un objet en mouvement, et notamment par son centre de gravité.) perturbée, ce qui va permettre enfin de savoir comment est organisée cette « poussière »...

  • 1675 : Jean Picard observe une luminescence (La luminescence est une émission de lumière dite "froide", par opposition à l'incandescence qui elle est chaude.) verte en agitant un tube de baromètre ; on découvrira quelques siècles plus tard que cela est dû à l'électricité (L’électricité est un phénomène physique dû aux différentes charges électriques de la matière, se manifestant par une énergie. L'électricité désigne également la branche de...) statique (Le mot statique peut désigner ou qualifier ce qui est relatif à l'absence de mouvement. Il peut être employé comme :) et aux vapeurs de mercure ;
  • 1854 : Geissler et Plücker découvrent les rayons cathodiques (On nomme rayons cathodiques une éjection continue d'électrons. Lorsque les éjections de rayons se font dans un gaz excitable, elles peuvent déterminer une fluorescence sur leur trajet. On peut alors observer la trace de ces courants...), des rayons verts luminescents lorsque l'on établit une forte tension (La tension est une force d'extension.) électrique dans une ampoule dont on a pompé l'air (L'air est le mélange de gaz constituant l'atmosphère de la Terre. Il est inodore et incolore. Du fait de la diminution de la pression de l'air avec l'altitude, il est...) (faible pression (La pression est une notion physique fondamentale. On peut la voir comme une force rapportée à la surface sur laquelle elle s'applique.) de gaz) ; ils inventent ainsi la lampe à décharge, qui éclaire maintenant nos supermarchés d'une lumière (La lumière est l'ensemble des ondes électromagnétiques visibles par l'œil humain, c'est-à-dire comprises dans des longueurs d'onde de 380nm (violet) à...) blanche, nos rues et nos stationnements d'une lumière orange (lampes au sodium) ;
  • 1897 : J. J. Thomson établit que ces rayons cathodiques sont constitués de particules chargées négativement arrachées à la matière, et découvre ainsi l'électron ; c'est la première décomposition (En biologie, la décomposition est le processus par lequel des corps organisés, qu'ils soient d'origine animale ou végétale dès l'instant qu'ils sont privés de vie, dégénèrent sous l'action de...) de l'atome ;
  • 1900 : Max Planck montre la quantification des échanges d'énergie (Dans le sens commun l'énergie désigne tout ce qui permet d'effectuer un travail, fabriquer de la chaleur, de la lumière, de produire un mouvement.) dans la matière (recherches sur le corps noir) ;
  • 1911 : expérience de Rutherford : il bombarde une feuille (La feuille est l'organe spécialisé dans la photosynthèse chez les végétaux supérieurs. Elle est insérée sur les tiges des plantes au...) d'or par des particules alpha (des noyaux d'hélium (L'hélium est un gaz noble ou gaz rare, pratiquement inerte. De numéro atomique 2, il ouvre la série des gaz nobles dans le tableau périodique des...), chargés positivement, obtenus par radioactivité) ; il en déduit que :
    • la plupart des particules vont en lignes droites, donc la matière est « pleine de trous » ;
    • mais certaines sont déviées et même rebroussent chemin, donc elles rencontrent des îlots très concentrés de matière chargée positivement (les + se repoussent entre-eux).
Il en déduit le modèle atomique planétaire : l'atome (Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une autre. Il est...) est constitué d'un noyau positif très petit et d'électrons tournant autour ; ce modèle pose un gros problème : en tournant, les électrons devraient perdre de l'énergie par rayonnement (Le rayonnement, synonyme de radiation en physique, désigne le processus d'émission ou de transmission d'énergie impliquant une...), et donc s'écraser sur le noyau? (ex.: Capture (Une capture, dans le domaine de l'astronautique, est un processus par lequel un objet céleste, qui passe au voisinage d'un astre, est retenu dans la gravisphère de ce dernier. La...) K)
  • 1913 : Niels Bohr (Niels Henrik David Bohr (7 octobre 1885 à Copenhague, Danemark - 18 novembre 1962 à Copenhague) est un physicien danois. Il est surtout connu pour son apport à l'édification de la mécanique...) réunit les concepts de Planck et de Rutherford, et propose un modèle atomique quantique: les orbites des électrons ont des rayons définis, il n'existe que quelques orbites « autorisées » ; ainsi, les échanges d'énergie quantifiés correspondent à des sauts entre les orbites définies, et lorsque l'électron (L'électron est une particule élémentaire de la famille des leptons, et possèdant une charge électrique élémentaire de signe négatif. C'est un des composants de l'atome.) est sur l'orbite (En mécanique céleste, une orbite est la trajectoire que dessine dans l'espace un corps autour d'un autre corps sous l'effet de la gravitation.) la plus basse, il ne peut pas descendre en dessous et s'écraser (mais ce modèle n'explique pas pourquoi) ;
  • 1914 : l'expérience de Franck et Hertz (Le hertz (symbole : Hz) est l’unité dérivée de fréquence du système international (SI). Elle est équivalente à...) valide le modèle de Bohr : ils bombardent de la vapeur () de mercure avec des électrons ; l'énergie cinétique (L'énergie cinétique (aussi appelée dans les anciens écrits vis viva, ou force vive) est l’énergie que possède un corps du fait de son mouvement. L’énergie cinétique d’un...) perdue par les électrons traversant les vapeurs est toujours la même ;
  • 1924 : Louis de Broglie (Louis Victor de Broglie, duc de Broglie (Dieppe, 15 août 1892 – Louveciennes, 19 mars 1987) était un mathématicien, physicien et académicien français.) postule la dualité onde-corpuscule ;
  • 1926 : Schrödinger modélise l'électron comme une onde (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales....), l'électron dans l'atome (Un atome (grec ancien ἄτομος [atomos], « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une autre. La théorie...) n'est donc plus une boule mais un « nuage » qui entoure le noyau ; ce modèle, contrairement aux autres, est stable car l'électron ne perd pas d'énergie.

Modèles obsolètes

Les modèles présentés dans cette section sont trop éloignés de la réalité pour pouvoir être utilisés. Ils ne sont présentés ici qu'à titre historique.

Le modèle de J.J. Thomson ou modèle de l'électron élastiquement lié a l'atome

Le pudding de Thomson, la charge (La charge utile (payload en anglais ; la charge payante) représente ce qui est effectivement transporté par un moyen de transport donné, et qui donne lieu à un paiement ou un bénéfice non...) positive est répartie uniformément dans tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) le volume (Le volume, en sciences physiques ou mathématiques, est une grandeur qui mesure l'extension d'un objet ou d'une partie de l'espace.), qui est parsemé d'électrons

Avec la découverte de l'électron en 1897, on savait que la matière était composée de deux parties : une négative, les électrons, et une positive, le noyau. Dans le modèle imaginé alors par Joseph John Thomson, les électrons, particules localisées, baignaient dans une « soupe » positive, à l'image des pruneaux dans le far breton (ou dans le plum-pudding pour les Britanniques ou encore comme des raisins dans un gâteau). Ce modèle fut invalidé en 1911 par l'expérience d'un de ses anciens étudiants, Ernest Rutherford.

Le modèle planétaire de Rutherford

L'expérience de Rutherford met en évidence que les charges positives ne sont pas « étalées » entre les électrons, mais sont concentrées en de petits points. Il bombarda une fine feuille d'or par un faisceau de particules alpha (particules de charges électriques positives). Il observa que les particules étaient déviées faiblement, ce qui ne correspondait pas au résultat prévu par le modèle de Thomson, pour lequel, elles n'auraient pas dû la traverser.

Rutherford imagine donc un modèle planétaire : l'atome est constitué d'un noyau positif autour (Autour est le nom que la nomenclature aviaire en langue française (mise à jour) donne à 31 espèces d'oiseaux qui, soit appartiennent au genre Accipiter, soit constituent les 5 genres Erythrotriorchis, Kaupifalco,...) duquel tournent des électrons négatifs. Entre le noyau - très petit par rapport à l'atome (environ 100 000 fois) - et ses électrons, un très grand vide (Le vide est ordinairement défini comme l'absence de matière dans une zone spatiale.) existe.

Ce modèle fut très vite mis en défaut par les équations de Maxwell (Les équations de Maxwell, aussi appelées équations de Maxwell-Lorentz, sont des lois fondamentales de la physique. Elles constituent les postulats de base de l'électromagnétisme, avec...) d'une part, qui prédisent que toute charge accélérée rayonne de l'énergie, et par les expériences montrant la quantification des niveaux d'énergie d'autre part.

Modèles approchés couramment employés

Le modèle des sphères dures

Le modèle le plus simple pour représenter un atome est une boule indéformable. Ce modèle est très utilisé en cristallographie. Une molécule (Une molécule est un assemblage chimique électriquement neutre d'au moins deux atomes, qui peut exister à l'état libre, et qui représente la plus petite quantité de...) peut se voir comme plusieurs boules accolées, un cristal (Cristal est un terme usuel pour désigner un solide aux formes régulières, bien que cet usage diffère quelque peu de la définition scientifique de ce mot....) comme des boules empilées. On utilise parfois une représentation « éclatée » : les atomes sont représentés comme des petites boules espacées, reliées par des traits, permettant de faire ressortir les directions privilégiées, les angles et de visualiser le nombre (La notion de nombre en linguistique est traitée à l’article « Nombre grammatical ».) des liaisons.

modèle des sphères dures pour représenter l'atome ; représentation d'une molécule d'eau (L’eau est un composé chimique ubiquitaire sur la Terre, essentiel pour tous les organismes vivants connus.) et d'un cristal cubique à faces centrées, compacte (gauche) et éclatée (à droite)

Ce modèle correspond bien à certaines propriétés de la matière, comme, par exemple, la difficulté de comprimer les liquides et les solides, ou bien le fait que les cristaux ont des faces bien lisses. En revanche, il ne permet pas d'expliquer d'autres propriétés, comme la forme des molécules : si les atomes n'ont pas de direction privilégiée, comment expliquer que les liaisons chimiques révèlent des angles bien définis ?

Le modèle de Bohr (Le modèle de Bohr est une théorie physique, basée sur le modèle planétaire de Rutherford cherchant à comprendre la constitution d'un atome, et plus particulièrement, celui de l'hydrogène et des ions hydrogénoïdes (ions ne possédant...)

Modèle de l'atome de Bohr : un modèle planétaire dans lequel les électrons ont des orbites définies

Un modèle fut développé par Niels Bohr en 1913 à partir des propriétés mises en évidence par Planck et Rutherford. Dans le modèle des sphères dures, l'atome est un objet (De manière générale, le mot objet (du latin objectum, 1361) désigne une entité définie dans un espace à trois dimensions, qui a une fonction précise, et qui peut être...) entier, indécomposable. Or, on sait depuis le milieu du XIXe siècle (Un siècle est maintenant une période de cent années. Le mot vient du latin saeculum, i, qui signifiait race, génération. Il a ensuite indiqué la durée...) que l'on peut en « arracher » des particules portant une charge électrique (La charge électrique est une propriété fondamentale de la matière qui respecte le principe de conservation.) négative, les électrons. Dans le modèle de Bohr, l'atome est composé d'un noyau chargé positivement, et d'électrons tournant autour, les rayons des orbites des électrons ne pouvant prendre que des valeurs bien précises.

Le noyau est très compact, d'un diamètre (Dans un cercle ou une sphère, le diamètre est un segment de droite passant par le centre et limité par les points du cercle ou de la...) d'environ 10-15 à 10-14 m, c'est-à-dire que le noyau est cent mille à un million (Un million (1 000 000) est l'entier naturel qui suit neuf cent quatre-vingt-dix-neuf mille neuf cent quatre-vingt-dix-neuf (999 999) et qui précède un million un (1 000 001). Il vaut un millier...) de fois plus petit que l'atome ; il porte une charge électrique positive. C'est aussi la partie la plus lourde de l'atome, puisque le noyau représente au moins 99,95% de la masse (Le terme masse est utilisé pour désigner deux grandeurs attachées à un corps : l'une quantifie l'inertie du corps (la masse inerte) et l'autre...) de l'atome. Les électrons sont ponctuels, c'est-à-dire que leur rayon est admis quasi nul (tout du moins plus petit que ce que l'on peut estimer). Ils portent une charge négative. Pour des raisons de lisibilité, le schéma ci-dessous n'est donc pas à l'échelle, en ce qui concerne les dimensions (Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d'une pièce sont sa longueur, sa largeur et sa profondeur/son épaisseur,...) du noyau et des électrons, ni aussi pour les rayons des différentes orbites (on notera ici que le nombre d'électrons sur les orbites n'est pas prédit par le modèle).

Cette vision permet de décrire les phénomènes spectroscopiques fondamentaux, c'est-à-dire le fait que les atomes absorbent ou émettent seulement certaines longueurs d'onde (ou couleur) de lumière ou de rayons X. En effet, le système {noyau+électrons} étant stable et confiné, d'énergie négative, il ne possède qu'un ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection d’objets (les éléments de l'ensemble), « une multitude qui peut être comprise comme un tout », comme...) discret d'états (et donc de niveaux) d'énergie : c'est le passage d'un état à l'autre de l'atome qui provoque une émission discrète d'énergie, ce qui explique donc les raies spectroscopiques des atomes. Le modèle de Bohr, décomposant l'atome en deux parties, un noyau et un nuage (Un nuage est une grande quantité de gouttelettes d’eau (ou de cristaux de glace) en suspension dans l’atmosphère. L’aspect d'un nuage dépend de la lumière...) d'électrons, est plus précis que le modèle des sphères dures, pour lequel la surface (Une surface désigne généralement la couche superficielle d'un objet. Le terme a plusieurs acceptions, parfois objet géométrique, parfois...) de la sphère (En mathématiques, et plus précisément en géométrie euclidienne, une sphère est une surface constituée de tous les points situés à une même distance d'un point...) correspond à l'orbite des électrons extérieurs.

Cependant, très vite, le modèle de l'atome de Bohr ne permettra pas d'expliquer l'ensemble des observations (L’observation est l’action de suivi attentif des phénomènes, sans volonté de les modifier, à l’aide de moyens d’enquête et d’étude appropriés. Le plaisir procuré explique la...) (effet Zeeman, etc.). Il faudra attendre 1924-1926 pour qu'avec Schrödinger, les orbites deviennent orbitales avec des énergies stationnaires : la Mécanique Quantique (Fille de l'ancienne théorie des quanta, la mécanique quantique constitue le pilier d'un ensemble de théories physiques qu'on regroupe sous l'appellation générale de physique quantique. Cette...) est née.

Source: Wikipédia publiée sous licence CC-BY-SA 3.0. Vous pouvez soumettre une modification à cette définition sur cette page.

La liste des auteurs de cet article est disponible ici.
Archives des News
  Juillet 2018
  Juin 2018
  Mai 2018
  Avril 2018
  Toutes les archives

Jeudi 19 Juillet 2018 à 00:00:10 - Physique - 0 commentaire
» ISOLDE produit des isotopes du chrome
Page générée en 0.172 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - Informations légales