Extremum - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Fonction optimum de deux fonctions

Les fonctions minimum et maximum de deux fonctions peuvent être définies à l'aides de valeurs absolues :

\operatorname{min} \left(f,g \right)=\frac{f+g-|f-g|}{2}

\operatorname{max} \left(f,g \right)=\frac{f+g+|f-g|}{2}

Extrema d'une fonction

Le maximum d'une fonction f définie sur un ensemble E et à valeurs dans un ensemble F ordonné est le maximum de l'ensemble des valeurs prises par f (de la partie f(E) de F). Ainsi m est le maximum de f s'il existe un élément a de E tel que f(a) = m et tel que pour tout élément x de E, f(x)f(a) ; l'élément a (qui n'est pas nécessairement unique) est appelé point de maximum de f.

Dans le cas où l'espace de départ de f est muni d'une structure topologique (par exemple si f est une fonction d'une ou plusieurs variables réelles à valeurs réelles), on distingue deux types d'extrema : les extrema globaux, qui correspondent à la définition précédente, et les extrema locaux.

Extremum local d'une fonction

Soient une fonction f définie sur un espace topologique E et a un point de E. On dit que f atteint en a un maximum local s'il existe un voisinage V de a tel que pour tout élément x de V, on ait f(x)f(a).
On dit alors que f(a) est un « maximum local » de f sur E et que a est un point de maximum local de f.

Théorèmes topologiques d'existence d'extremas globaux

Soit une fonction f : D \to\R , où D est un espace topologique. Par exemple, D peut être une partie de R (cas d'une fonction d'une variable réelle), ou d'un espace Rk, avec k un entier naturel (cas d'une fonction de k variables réelles).

L'existence d'extrema globaux est assurée dès lors que la fonction f est continue et définie sur une partie D compacte : en effet, l'image f(D) par une telle fonction continue d'une partie compacte est une partie compacte de l'espace d'arrivée R ; en tant que partie bornée de R, elle admet une borne supérieure, et cette borne supérieure est dans f(D) puisque cette partie est fermée.

En dimension k=1, c'est en particulier le cas si I est un intervalle fermé borné, c'est-à-dire de la forme [a,b] (voir théorème des bornes). En dimension supérieure k, c'est en particulier le cas si D est une boule fermée (de la forme D=B(A,r)=\{X\in \mathbf{R}^k/||X-A||\leq r\} , où | | . | | désigne une norme sur \mathbf{R}^k .

Méthodes issues du calcul différentiel pour la recherche d'extrema locaux.

Soit une fonction f : D \to\R , où D est une partie ouverte de Rk ; par exemple, dans le cas d'une variable réelle, D peut être un intervalle ouvert de la forme ]a,b[ (avec a et b des nombres réels, ou a=-\infty , ou b=+\infty ).

Si la fonction f atteint un extremum local en un point a où elle est différentiable, alors toutes ses dérivées partielles s'annulent en a ; en particulier, dans le cas d'une fonction d'une seule variable, le nombre dérivé de f en a est nul.

Pour cette raison, l'étude des extrema passe souvent par la recherche des points d'annulation de la dérivée, appelés points critiques de f. Un point critique n'est pas nécessairement un point d'extremum, comme le montre l'exemple de la fonction

f : \R \to\R,\, x \mapsto x^3 au point 0. On peut, cependant, sous certaines hypothèses supplémentaires, affirmer qu'un point critique est un point d'extremum.

Cas d'une fonction d'une variable

  • Condition suffisante pour un extremum local :
Si f est dérivable sur I, et si a est un point intérieur à I où la dérivée de f s'annule en changeant de signe, alors f atteint un extremum local en a. Plus précisément, en supposant \ f\,'(a) = 0  :
S'il existe α réel strictement positif tel que [a-\alpha,\, a + \alpha] \subset I
et f\,' \geq 0 sur [a-\alpha,\, a] , f\,' \leq 0 sur [a,\, a + \alpha] ,
alors f atteint un maximum local en a.
S'il existe α réel strictement positif tel que [a-\alpha,\, a + \alpha] \subset I
et f\,' \leq 0 sur [a-\alpha,\, a] , f\,' \geq 0 sur [a,\, a + \alpha] ,
alors f atteint un minimum local en a.
Remarque

La condition nécessaire pour un extremum local ne s'applique pas aux bornes de l'intervalle. Par exemple, la fonction

f : [0, 1] \to\R,\, x \mapsto x

admet deux extremums globaux (a fortiori locaux), atteints en 0 et 1. Par ailleurs, elle est dérivable et sa dérivée ne s'annule en aucun point.

Cas des fonctions de plusieurs variables

Condition suffisante pour un extremum local :

On suppose ici que A est un ouvert, et que f est de classe C2 sur A.
On considère un point a de A. La (matrice) hessienne de f en a est notée \nabla^2 f(a)  ; elle est symétrique réelle.
Si \nabla f(a) = 0 et si \nabla^2 f(a) est définie négative, alors f atteint un maximum local en a.
Si \nabla f(a) = 0 et si \nabla^2 f(a) est définie positive, alors f atteint un minimum local en a.
Rappel : par définition, la hessienne de f en a est la matrice carrée d'ordre n ayant \frac{\partial^2 f}{\partial x_i\, \partial x_j}(a) pour élément en ligne i et colonne j.
Comme f est de classe C2, il résulte du théorème de Schwarz sur les dérivées partielles d'ordre 2 que la hessienne est symétrique.
Page générée en 0.148 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise