Photosynthèse - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Les deux phases de la photosynthèse

Si la photosynthèse peut s’étudier de manière globale avec :

6CO2 + 12H2O + lumière → C6H12O6 + 6O2 + 6H2O.

Ce processus se déroule en réalité en deux phases bien distinctes :

1. Les réactions photochimiques, appelées communément « phase claire », qui peuvent se résumer ainsi :

12H2O + lumière (La lumière est l'ensemble des ondes électromagnétiques visibles par l'œil humain, c'est-à-dire comprises dans des longueurs d'onde de 380nm (violet) à 780nm (rouge). La lumière est intimement liée à...) → 6O2 + énergie chimique (24 Hydrogènes) .

2. Le cycle de Calvin, appelé aussi phase (Le mot phase peut avoir plusieurs significations, il employé dans plusieurs domaines et principalement en physique :) de fixation du carbone (Le carbone est un élément chimique de la famille des cristallogènes, de symbole C, de numéro atomique 6 et de masse atomique 12,0107.) ou phase non-photochimique, ou encore improprement appelé « phase sombre » :

6CO2 + énergie chimique (24 Hydrogènes) → C6H12O6 + 6H2O

Ce qui est noté « énergie chimique » correspond à 12 molécules de NADPH+H+ et de l'ATP. On aura remarqué que la 2e phase utilise l'énergie chimique fournie par la 1re phase photochimique. La 2e phase dépend aussi de la lumière, mais indirectement. C'est pourquoi l'expression « phase sombre » souvent utilisée dans le passé (Le passé est d'abord un concept lié au temps : il est constitué de l'ensemble des configurations successives du monde et s'oppose au futur sur une échelle des temps centrée sur le présent. L'intuition du...), est en fait inappropriée.

Les réactions photochimiques ou phase claire

La lumière nous parvient sous forme de photons. Ces photons possèdent un potentiel énergétique différent selon leur longueur (La longueur d’un objet est la distance entre ses deux extrémités les plus éloignées. Lorsque l’objet est filiforme ou en forme de lacet, sa longueur est celle de l’objet...) d'onde (Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales. Elle transporte de l'énergie sans transporter de matière. Une onde...). L’énergie transportée par un photon (En physique des particules, le photon est la particule élémentaire médiatrice de l'interaction électromagnétique. Autrement dit, lorsque deux particules chargées électriquement interagissent, cette interaction se...) est inversement proportionnelle à la longueur d’onde. Un photon (En physique des particules, le photon (souvent symbolisé par la lettre γ — gamma) est la particule élémentaire médiatrice de l’interaction électromagnétique. Autrement dit, lorsque deux...) de lumière rouge (La couleur rouge répond à différentes définitions, selon le système chromatique dont on fait usage.) possède moins d’énergie qu’un photon de lumière bleue.

Les pigments absorbent mieux certaines longueurs d’onde. Par exemple, la chlorophylle absorbe bien la lumière rouge et la lumière bleue, mais elle n’absorbe pas bien la lumière verte ce qui leur donne cette couleur (La couleur est la perception subjective qu'a l'œil d'une ou plusieurs fréquences d'ondes lumineuses, avec une (ou des) amplitude(s) donnée(s).). Les caroténoïdes quant à eux absorbent mieux la lumière verte mais pas bien la lumière jaune (Il existe (au minimum) cinq définitions du jaune qui désignent à peu près la même couleur :) ou la lumière orange ce qui leur donne cette couleur.

Lorsqu’un pigment capte un photon d'énergie correspondant à sa capacité d’absorption un de ses électrons passe à l’état excité. Cette énergie peut se transmettre de 3 façons : soit en la réémettant sous forme de photon lumineux, soit sous forme de chaleur ; ces deux voies ne sont pas utiles au processus photosynthétique. La troisième consiste à transmettre l’énergie par résonance (Lorsqu'on abandonne un système stable préalablement écarté de sa position d'équilibre, il y retourne, généralement à travers des oscillations propres. Celles-ci...) et il n’y a presque aucune perte d’énergie.

Les antennes collectrices ( light harvesting complex, ou LHC) sont des ensembles comprenants des pigments (chlorophylles, caroténoïdes et phycoérythrobiline) et des protéines. Elles collectent l’énergie lumineuse et la distribuent aux centres réactionnels des photosystèmes.

Les centres réactionnels sont le lieu où toute l’énergie converge. Ils sont composés de molécules de chlorophylle (P680 ou P700) liée à un accepteur primaire d’électrons.

Les photosystèmes sont composés des antennes collectrices qui entourent un centre réactionnel et de plusieurs molécules servant à transporter des électrons et des protons. À l’exception de quelques transporteurs d’électrons toutes les molécules qui composent les photosystèmes sont raccordées les unes aux autres.

Le Photosystème II

ce schéma représente le parcours des électrons dans les deux photosystèmes lors de la réaction de photosynthèse
réactions de photosynthèse (La photosynthèse (grec φῶς phōs, lumière et σύνθεσις sýnthesis, composition) est le processus bioénergétique qui permet aux plantes et à...) au niveau de la membrane thylakoide.

Le photosystème II (appelé ainsi parce qu’il a été découvert en second) et les complexes des cytochromes sont responsables de la libération d’oxygène dans l’atmosphère et il produit de l’ATP à partir d’ADP et d’un phosphate (Un phosphate, en chimie inorganique, est un sel d'acide phosphorique résultant de l'attaque d'une base par de l'acide phosphorique.).

  1. Un pigment des LHC capte un photon qui correspond à une longueur d’onde qu’il peut absorber. Un électron (L'électron est une particule élémentaire de la famille des leptons, et possèdant une charge électrique élémentaire de signe négatif. C'est un des composants de l'atome.) de ce pigment passe à l’état excité. L’énergie est transmise par résonance à un autre pigment.
  2. L’énergie se transmet ainsi jusqu’au centre réactionnel du PS II.
  3. Le P680 est une molécule (Une molécule est un assemblage chimique électriquement neutre d'au moins deux atomes, qui peut exister à l'état libre, et qui...) de chlorophylle a située au centre du CR du PS II. Elle est reliée à une phéophytine (phéo). Le P680 capte très bien les photons d’une longueur d’onde aux alentours de 680 nm. Lorsque cette molécule reçoit l’énergie provenant des LHC ou qu’elle capte elle-même un photon, un de ses électrons passe de l’état fondamental à l’état excité. Cet électron n’a pas le temps (Le temps est un concept développé par l'être humain pour appréhender le changement dans le monde.) de retourner à l’état fondamental, car il est capté par la Phéo.
  4. La Phéo est une molécule de chlorophylle sans atome (Un atome (du grec ατομος, atomos, « que l'on ne peut diviser ») est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec une autre. Il est généralement...) central de magnésium (Le magnésium est un élément chimique, de symbole Mg et de numéro atomique 12.). Cet atome (Un atome (grec ancien ἄτομος [atomos], « que l'on ne peut diviser ») est la plus petite partie d'un...) est remplacé par 2 atomes d’hydrogène. Cette molécule capte l’électron excité du P680.
  5. Revenons un peu en arrière : Le P680 vient de perdre un électron, il doit en trouver un pour redevenir stable. La tyrosine Z (tyr Z) est le donneur primaire d’électron du PSII. Cette molécule va donner un électron au P680. Cette molécule possède un groupement hydroxyde. Pour demeurer stable elle perdra l’hydrogène du radical OH cet hydrogène (L'hydrogène est un élément chimique de symbole H et de numéro atomique 1.) deviendra un proton (Le proton est une particule subatomique portant une charge électrique élémentaire positive.), car son électron a été cédé au P680.
  6. La tyr z doit aussi redevenir stable pour que le processus se poursuive. Un agrénat de 4 manganèses est l’enzyme qui sépare l’eau (OEC). Cette molécule est située du côté sur la paroi intérieure du thylakoïde. Deux molécules d’eau y sont accrochés. La tyrosine qui a perdu son électron va s’emparer d’un atome d’hydrogène d'une molécule d'eau (L’eau est un composé chimique ubiquitaire sur la Terre, essentiel pour tous les organismes vivants connus.) et elle sera de nouveau stable. Cette étape se produit 4 fois. Les deux O vont se libérer de l’agrénat et former du O (L’oxygène qu’on respire).
  7. Revenons à la Phéo qui vient de gagner un électron. Cet électron sera repris par une autre molécule qui le donnera à la plastoquinone (PQ). Elle prendra un proton provenant du stroma pour demeurer stable. Un autre électron arrivera et la PQ prendra un autre proton.
  8. La molécule va se diriger vers les complexes du cytochromes b6/f. Elle libérera ses protons dans le lumen et donnera ses électrons aux complexes des cytochromes.
  9. Conséquemment il y a beaucoup plus de protons dans le lumen que dans le stroma. La membrane est très peu perméable aux protons alors ceux-ci doivent traverser par le canal de l’ATP synthase. Le fait qu’un proton passe dans ce canal produit l’énergie nécessaire à la production d’ATP par cette enzyme (Une enzyme est une molécule (protéine ou ARN dans le cas des ribozymes) permettant d'abaisser l'énergie d'activation d'une réaction et...).

Le photosystème I

Le photosystème I (PSI) est responsable de la libération de NADPH dans le Stroma.

  1. la plastocyanine (PC) prend un électron des complexes des cytochromes b6/f et l’apporte au P700.
  2. Le P700 est une molécule de chlorophylle a qui absorbe bien les photons d’une longueur d’onde se situant aux alentours de 700 nm. Le fonctionnement du PS I est semblables au fonctionnement du PS II : les LHC dirigent leur énergie vers le P 700 qui perd un électron au détriment d’une autre molécule. Cet électron est remplacé par un électron de la PC.
  3. L’électron éjecté du P700 est capté par une molécule de chlorophylle a qui le cède à une autre molécule qui le cède à une autre molécule, qui le cède à une autre molécule (le passage de l’électron d’une molécule à l’autre lui fait perdre de l’énergie), qui le cède à une autre molécule. Cette molécule cède l’électron à la ferrédoxine.
  4. La ferrédoxine est une molécule composée de 2 atomes de fer (Le fer est un élément chimique, de symbole Fe et de numéro atomique 26. C'est le métal de transition et le matériau ferromagnétique le plus courant dans la vie quotidienne, sous forme pure ou...) et de 2 atomes de soufre (Le soufre est un élément chimique de la famille des chalcogènes, de symbole S et de numéro atomique 16.). Elle est située près du stroma entre les complexes des cytochromes et le PS I. Elle peut fournir des électrons à plusieurs autres métabolismes tel celui de l’azote. Dans le cas de la photosynthèse elle donne son électron à une molécule appelée ferrédoxine NADP réductase. Cette molécule unira deux protons provenant du stroma à une molécule de NADP à l’aide de l’électron qu’elle vient de recevoir. Elle se situe dans le stroma.

La photophosphorylation non cyclique est le processus expliqué ci-haut car les électrons ne reviennent jamais à la même molécule.

La photophosphorylation cyclique

La photophosphorylation cyclique intervient lorsque le taux de NADPH devient trop élevé, car il faut plus d’ATP que de NADPH.

  1. Le P700 du Ps I devient excité, un électron est éjecté, il suit la chaine d’électrons jusqu’à la ferrédoxine. La ferrédoxine se déplace jusqu’à la plastoquinone lui donne un électron.
  2. la PQ prend un proton du stroma et la dernière étape se reproduit. La Pq ayant 2 protons se dirige vers les complexes des cytochromes b6/f.
  3. Les électrons retournent vers le P700 par la plastocyanine.
  4. Les protons induit (L'induit est un organe généralement électromagnétique utilisé en électrotechnique chargé de recevoir l'induction de l'inducteur et de la transformer en...) dans le lumen par PQ et les complexes des cytochromes servent (Servent est la contraction du mot serveur et client.) à produire de l’ATP grâce à l’ATP synthase.

Une caroténoïde se trouve près du P680 et du P700. Lorsque la tyr z ou la pc ne peut pas fournir d’électron au P680 ou au P700 la caroténoïde cède un électron pour éviter que le P… détruise tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou l'univers.) le CR en enlevant un électron à une molécule avoisinante. Les caroténoïdes peuvent répandre leur énergie sous forme de chaleur (Dans le langage courant, les mots chaleur et température ont souvent un sens équivalent : Quelle chaleur !) si trop d’énergie se dirige vers les CR.

Le cycle de Calvin ou phase chimique non photo-dépendante (ou "phase sombre")

Dans un deuxième temps, l'énergie chimique contenue dans l'ATP et le NADPH+H+ permet de fixer le carbone contenu dans le dioxyde de carbone (Le dioxyde de carbone, communément appelé gaz carbonique ou anhydride carbonique, est un composé chimique composé d'un atome de carbone et de deux atomes d'oxygène et dont la formule brute est : CO2. C'est donc un...) atmosphérique en le liant (Un liant est un produit liquide qui agglomère des particules solides sous forme de poudre. Dans le domaine de la peinture, il permet au pigment d'une peinture de coller sur le support, il est alors...) aux atomes d'hydrogène des molécules d'eau. C'est le cycle de Calvin ou phase de fixation du carbone. Cette étape porte aussi le nom de phase chimique, et parfois le nom de "phase sombre", bien que pouvant se réaliser à la lumière : cette appellation reflète seulement le fait que la lumière n'est pas directement nécessaire à cette étape, contrairement à la phase photochimique (ou "phase claire"), qui est photo-dépendante.

Le carbone fixé se fait ensuite réduire en glucide (Les glucides sont une classe de molécules organiques contenant un groupement carbonyl (aldéhyde ou cétone) et plusieurs groupements hydroxyle (-OH) . Les glucides...) par l'ajout d'électrons et de protons H+. Le potentiel réducteur est fourni (Les Foúrnoi Korséon (Grec: Φούρνοι Κορσέων) appelés plus...) par le NADPH+H+ qui a acquis des électrons grâce à la phase photochimique. Enfin, le cycle de Calvin a besoin (Les besoins se situent au niveau de l'interaction entre l'individu et l'environnement. Il est souvent fait un classement des besoins humains en trois grandes catégories : les besoins primaires, les besoins secondaires et les besoins...) d'énergie sous forme d'ATP pour convertir le carbone en glucide.

Cependant, chez la plupart des végétaux, le cycle de Calvin se déroule de jour (Le jour ou la journée est l'intervalle qui sépare le lever du coucher du Soleil ; c'est la période entre deux nuits, pendant laquelle les rayons du Soleil éclairent le ciel. Son début (par rapport à minuit heure locale) et...) car c'est durant le jour que la phase photochimique peut régénérer le NADPH+H+ et l'ATP indispensable à la transformation du carbone en glucide. Car sans la présence de la lumière et les produits qui résultent de la phase photochimique, la phase chimique n'aurait pas lieu. La phase photochimique et la phase chimique (non photo-dépendante) sont complémentaires, l'une ne va pas sans l'autre.

Page générée en 0.015 seconde(s) - site hébergé chez Amen
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique