Polynôme formel - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Factorisation

Équation algébrique

La question à l'origine de la découverte du polynôme est celle de l'équation. Pendant près de 1.000 ans, cette question et les méthodes pour y parvenir représentaient l'essentiel de l'algèbre. Si P est un polynôme à coefficients dans le corps K, noté :

P = a_n X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0

La question revient à trouver les valeurs xi, appelées racines, telles que l'expression suivante soit nulle :

a_n x_i^n + a_{n-1}x_i^{n-1} + \cdots + a_1x_i + a_0 = 0

Bien avant la formalisation moderne de la notion de fonction, on avait remarqué que remplacer l'indéterminée par une valeur donne le même résultat dans toutes les expressions de P. Si k est un élément de K, souvent un nombre, il est possible de diviser P par le polynôme X - k. Le reste est un polynôme constant c, car de degré strictement inférieur à celui de X - k. On obtient une nouvelle expression de P, à savoir P = Q.(X - k) + c.

Substituer la valeur k à l'indéterminée X donne le même résultat dans l'expression de droite et de gauche. Si c est non nul, k n'est pas racine car l'expression est égale à c. En revanche si c est nul, alors k est racine.

Racine et factorisation d'un polynôme — Soit P un polynôme à coefficients dans le corps K, un nombre r est racine du polynôme P si, et seulement si le polynôme X - r divise le polynôme P

Vue sous l'angle arithmétique, la recherche des racines d'un polynôme est équivalente à la recherche des facteurs du premier degré de P. Ces facteurs sont nécessairement irréductibles, le produit de deux polynômes non constants n'est en effet jamais de degré 1, car le produit de deux polynômes est de degré la somme des degrés des deux polynômes. Résoudre une équation revient à trouver les facteurs irréductibles d'un type particulier, ceux du premier degré. On retrouve un problème déjà connu en arithmétique.

L'intégralité des méthodes de résolutions algébriques d'une équation peuvent être vues comme une factorisation du polynôme en éléments irréductibles du premier degré. La méthode classique de l'équation du second degré se résume finalement à cela. On peut en déduire un premier résultat.

Proposition — Un polynôme à coefficients dans K n'admet jamais plus de racines que son degré.

Polynômes irréductibles à coefficients dans C, R et Q

Selon le choix du corps des coefficients, les polynômes irréductibles n'ont pas la même forme. Considérons le polynôme P égal à X5 - X4 - 4X + 4. Rechercher ses facteurs irréductibles du premier degré revient à résoudre l'équation polynomiale associée. Si cette équation est étudiée dans C, le théorème fondamental de l'algèbre indique l'existence d'au moins une racine. Dans le cas particulier étudié on trouve la racine évidente 1, et une division euclidienne montre que :

P = (X^4 - 4)(X-1)\;

Le polynôme P s'écrit comme le produit de deux polynômes dont un du premier degré. L'usage du même théorème montre que l'autre polynôme possède au moins une racine, ce qui indique l'existence d'un autre facteur du premier degré. De proche en proche on factorise P en polynômes du premier degré. En pratique une identité remarquable appliqué 3 fois permet la factorisation de l'exemple étudié :

P = (X- \sqrt 2)(X + \sqrt 2)(X- i\sqrt 2)(X + i\sqrt 2)(X-1)\;

Et dans le cas général :

Polynôme irréductible dans C — Les seuls polynômes à coefficients dans le corps des nombres complexes irréductibles, sont ceux du premier degré.

La même équation sur R donne des résultats différents. Le terme i, désignant l'unité imaginaire, n'existe pas. La factorisation donne :

P = (X^2 + 2)(X- \sqrt 2)(X + \sqrt 2)(X-1)\;

Il est aisé de se rendre compte que le premier facteur est irréductible. Remplacer l'indéterminée par une valeur donne toujours un nombre plus grand que 2, le polynôme X2 + 2 ne contient aucun diviseur du premier degré et, comme il est de degré 2, il est nécessairement irréductible. Dans le cas général :

Polynôme irréductible dans R — Les seuls polynômes irréductibles à coefficients réels, sont ceux du premier degré et ceux du deuxième degré ayant un discriminant strictement négatif.

Dans Q, l'exemple choisi montre qu'il n'existe qu'un seul facteur du premier degré, car la racine de 2 n'est pas un nombre rationnel. Les polynômes irréductibles à coefficients dans Q sont beaucoup plus variés, on en trouve de tous les degrés, comme le montre le critère d'Eisenstein.

Coefficients et racines

À condition d'accepter d'élargir l'ensemble de nombres, pour les configurations classiques comme les nombres rationnels, réels ou complexes, il est toujours possible de factoriser un polynôme P. Cela donne deux manières d'écrire P. En utilisant les mêmes notations que précédemment :

P = a_nX^n + a_{n-1}X^{n-1} + \cdots + a_0 = a_n(X - r_1)(X - r_2)\cdots (X -r_n)

Ici r k pour k variant de 1 à n, désigne les différentes racines du polynôme P. Les valeurs que prennent les r k peuvent être semblables, on parle alors de racines multiples. La décomposition correspond à celles des facteurs premiers de P, la constante an supposée non nulle, correspond à l'élément du groupe des unités, sa valeur est celle du coefficient du monôme dominant.

Dans le cas du polynôme unitaire du deuxième degré, l'égalité devient :

 P = X^2 + a_1X + a_0 = (X - r_1)(X - r_2)\;

Le développement du terme de droite donne les relations :

(X - r_1)(X - r_2)= X^2 -(r_1+r_2)X + r_1r_2 = X^2 + a_1X + a_0 \quad\text{et}\quad a_1 = -(r_1+r_2),\quad a_2 = r_1r_2

Cette factorisation donne une relation entre les coefficients et les racines. Elle se généralise.

Si l'on remplace maintenant r1 et r2 par deux indéterminées X et Y, on obtient deux polynômes X.Y et X+Y dit symétriques. Un polynôme à plusieurs indéterminées est dit symétrique si une permutation des indéterminées ne modifie pas le polynôme. Ainsi X.Y est symétrique, mais X2 + Y ne n'est pas. Pour générer des polynômes symétriques à n variables, il suffit d'utiliser ce procédé avec un polynôme de degré n. On obtient exactement n polynômes symétriques. Tous les polynômes symétriques s'obtiennent par combinaison linéaires de produits de ces n polynômes symétriques.

Page générée en 0.639 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise