Racine d'un nombre - Définition et Explications

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Introduction

En mathématiques, une racine n-ième d'un nombre a est un nombre b tel que bn = a, où n est un entier naturel non nul,

Selon que l'on travaille dans l'ensemble (En théorie des ensembles, un ensemble désigne intuitivement une collection...) des réels positifs, l'ensemble des réels ou l'ensemble des complexes, le nombre (La notion de nombre en linguistique est traitée à l’article « Nombre...) de racines n-ièmes d'un nombre a peut être 0, 1, 2 ou n.

Pour un nombre réel (En mathématiques, un nombre réel est un objet construit à partir des nombres...) a positif, il existe un unique réel b positif tel que bn = a. Ce réel est appelé la racine n-ième de a (ou racine n-ième principale de a ) et se note \sqrt[n]{a} avec le symbole radical (\sqrt{}) ou a^{\frac 1 n}. La racine la plus connue est la racine carrée (La racine carrée d’un nombre réel positif x est le nombre positif dont le...) d'un réel. Cette définition (Une définition est un discours qui dit ce qu'est une chose ou ce que signifie un nom. D'où la...) se généralise pour a négatif et b négatif à condition que n soit impair.

Le terme de racine d'un nombre ne doit pas être confondu avec celui de racine d'un polynôme (Un polynôme, en mathématiques, est la combinaison linéaire des produits de...) qui désigne la (ou les) valeur(s) où le polynôme s'annule.

Racine d'un réel

Racine carrée

Pour tout (Le tout compris comme ensemble de ce qui existe est souvent interprété comme le monde ou...) réel r strictement positif, l'équation (En mathématiques, une équation est une égalité qui lie différentes quantités, généralement...) x2 = r admet deux solutions réelles opposées, et lorsque r = 0, l'équation x2 = 0 admet comme seule solution 0.

La racine carrée d'un réel r positif (r\geq 0) est par définition l'unique solution réelle positive de l'équation

x2r = 0 d'inconnue x.

Elle est notée \sqrt{r} .

Exemples

  • La racine carrée de deux (La racine carrée de deux, notée √2, √2 ou 21/2, est définie comme le...) est \sqrt 2 \simeq 1{,}414\,213\,56\ldots
  • La racine carrée de trois est \sqrt 3 \simeq 1{,}732\,050\,81\ldots

Racine cubique (En mathématiques, la racine cubique d'un nombre réel y est l'unique nombre x qui, élevé à la...)

La racine cubique d'un réel r quelconque est l'unique racine réelle de l'équation

x3r = 0 d'inconnue x.

Elle est notée \sqrt[3]{r} .

Exemple:

  • On a \sqrt[3]{-8}=-2. En effet − 2 est le seul nombre réel dont la puissance (Le mot puissance est employé dans plusieurs domaines avec une signification particulière :) troisième est égale à − 8.

Racine n-ième d'un nombre réel positif

Pour tout entier naturel (En mathématiques, un entier naturel est un nombre positif (ou nul) permettant fondamentalement...) non nul n, l'application x\mapsto x^n est une bijection (Une fonction f: X → Y est dite bijective ou est une bijection si pour tout y...) de \mathbb{R}_{+} sur \mathbb{R}_{+} et donc pour tout réel r positif, l'équation xn = r admet une unique solution dans \mathbb{R}_{+}.

La racine énième (ou racine n-ième) d'un réel r positif (r ≥ 0, n > 0) est l'unique solution réelle positive de l'équation

xnr = 0 d'inconnue x.

Elle est notée \sqrt[n]{r}.

Remarquons que la racine n-ième de r est aussi l'unique racine positive du polynôme Xnr.

Lorsque n est pair, l'équation

xnr = 0 d'inconnue x

possède deux solutions qui sont \sqrt[n]{r} et -\sqrt[n]{r}.

Lorsque n est impair, l'équation

xnr = 0 d'inconnue x

ne possède qu'une seule solution \sqrt[n]{r}.

Racine n-ième d'un nombre réel négatif

Le traitement des racines de nombres négatifs n'est pas uniforme. Par exemple, il n'existe pas de racine carrée réelle de -1 puisque pour tout réel x, x2 + 1 > 0, mais la racine cubique de -27 existe et est égale à -3.

Pour tout entier naturel impair n, l'application x\mapsto x^n est une bijection de \mathbb{R} sur \mathbb{R} donc tout nombre réel admet exactement une racine n-ième.

Pour tout entier naturel impair n, la racine énième (ou racine n-ième) d'un réel r quelconque est l'unique solution réelle de l'équation

xnr = 0

d'inconnue x.

Il s'ensuit que les racines d'ordres impairs de nombres réels négatifs sont négatives.

Remarquons que pour les entiers naturels impairs n et pour tout réel a, on a

\sqrt[n]{-a} =-\sqrt[n]{a}.

Le besoin (Les besoins se situent au niveau de l'interaction entre l'individu et l'environnement. Il est...) de travailler avec des racines de nombres négatifs a conduit à la mise en place des nombres complexes, mais il y a également dans le domaine des nombres complexes des restrictions pour les racines. Voir ci-dessous.

Les propriétés des racines

Les règles de calcul des racines qui découlent des propriétés des puissances.

Pour les nombres strictement positifs, a et b, on a les règles de calcul suivantes:

  • \sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}
  • \sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a}
  • \frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}
  • \left(\sqrt[n]{a} \right)^m = \sqrt[n]{a^m}

Dans le cas des nombres négatifs, ces règles de calcul ne pourront être appliquées que si m et n sont des nombres impairs. Dans le cas des nombres complexes, elles sont à éviter.

Exposant (Exposant peut signifier:) fractionnaire

Dans l'ensemble des réels strictement positifs, le nombre qui, élevé à la puissance n, donne a est noté \sqrt[n]{a}. L'idée est de noter ce nombre comme une puissance de a, quitte à prendre un exposant non entier. Il s'agissait donc de trouver un exposant p tel que \left(a^p\right)^n = a. En utilisant des opérations connues sur des exposants entiers que l'on généraliserait à des exposants non entiers, on obtiendrait apn = a1, soit pn = 1 et p=\frac 1n.

Ainsi on peut noter la racine carrée de a , \sqrt a ou a^{\frac 12}, la racine cubique de a , \sqrt[3] a ou a^{\frac 13} et la racine n-ième de a , \sqrt[n] a ou a^{\frac 1n}.

Cette extension des valeurs possibles pour l'exposant est due au travail de Newton et Leibniz. On peut poursuivre le travail en observant que

\sqrt[n]{a^m} = \left(\sqrt[n] a\right)^m= \left(a^m\right)^{\frac 1n}= \left(a^{\frac 1n}\right)^m = a^{\frac mn}.

et vérifier que cette notation est compatible avec les propriétés déjà connues sur les exposants entiers.

C'est chez Newton que l'on voit apparaître pour la première fois un exposant fractionnaire. Mais Newton et Leibniz ne s'arrêteront pas là et se poseront même la question de travailler sur des exposants irrationnels sans être pour autant capables de leur donner un sens (SENS (Strategies for Engineered Negligible Senescence) est un projet scientifique qui a pour but...). Ce n'est qu'un siècle (Un siècle est maintenant une période de cent années. Le mot vient du latin saeculum, i, qui...) plus tard que ces notations prendront un sens précis avec la mise en place de la fonction exponentielle (La fonction exponentielle est l'une des applications les plus importantes en analyse, ou plus...) et la traduction :

a^{\frac 1n} =\exp\left(\frac 1n\ln a\right) pour tout réel a strictement positif.

Fonction racine n-ième

Racine carré (Un carré est un polygone régulier à quatre côtés. Cela signifie que ses...) et racine cubique comme réciproques des fonctions carré et cube (En géométrie euclidienne, un cube est un prisme dont toutes les faces sont carrées....)

Pour tout entier naturel non nul n, l'application x\mapsto x^n est une bijection de \mathbb{R}_{+} sur \mathbb{R}_{+} dont l'application réciproque (En mathématiques, une application réciproque est en des termes simples une fonction qui...) est la fonction racine n-ième. Il est donc loisible de construire sa représentation graphique, à l'aide de celle de la la fonction puissance par symétrie d'axe d:y = x.

On remarque que cette fonction est continue sur l'intervalle [0;+\infty[ et l'existence à l'origine d'une tangente confondue avec l'axe des y donc d'une non-dérivabilité en 0 ainsi qu'une branche parabolique d'axe (Ox).

Les formules sur la dérivée (La dérivée d'une fonction est le moyen de déterminer combien cette fonction varie quand la...) de la réciproque (La réciproque est une relation d'implication.) permettent d'établir que la fonction racine n-ième est dérivable sur l'intervalle ]0; + \infty[ et que sa dérivée est x \mapsto \frac{\sqrt[n] x}{nx}, soit encore, avec l'exposant fractionnaire x \mapsto \frac 1n x^{\frac 1n - 1} montrant ainsi que la formule sur la dérivée d'une fonction puissance entière se généralise à celle d'une puissance inverse (En mathématiques, l'inverse d'un élément x d'un ensemble muni d'une loi de...).

Développement en série entière

Le radical ou racine peut être représenté par la série :

 \sqrt[n]{1+x}=(1+x)^{\frac 1n} = \sum_{k=0}^\infty a_k x^k

 a_k=\frac{\frac 1n\left(\frac 1n - 1\right)\left(\frac 1n - 2\right)\cdots \left(\frac 1n - k+1\right)}{k!}= \frac{\displaystyle\prod_{i=0}^k (1+n-in)}{(1+n)k!n^k}

avec | x | < 1.

Page générée en 0.045 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
Ce site est édité par Techno-Science.net - A propos - Informations légales
Partenaire: HD-Numérique