La théorie de la relativité d'échelle, développée par le physicien français Laurent Nottale, est une tentative qui vise à concevoir une théorie géométrique de l'espace-temps valable à toutes les échelles, compatible avec le principe de relativité. Pour cela, l'hypothèse classique de la différentiabilité de l'espace-temps est remplacée par celle plus générale de non-forcément-différentiable : l'espace-temps serait non-différentiable à certaines échelles (relativement plus petites), et différentiables à d'autres (celles de la physique classique). L'espace-temps possèderait ainsi un caractère fractal de dépendance d'échelle qui doit transparaître dans la définition même des systèmes de coordonnées, et des équations de la physique. Le résultat des mesures d'un phénomène physique serait alors dépendant de notre choix de référentiel en termes de position, d'orientation, de mouvement et d'échelle (ce qui produit une variation des résultats de la mesure selon la résolution des instruments utilisées).
La relativité d'échelle est une jeune théorie en pleine construction. Elle reste peu connue et sujette à discussion.
L'idée moderne de la relativité remonte à Galilée, avec son exposé sur les systèmes du monde, où il décrit le mouvement « qui est comme rien », c'est-à-dire que le mouvement en tant que tel n'existe pas pour celui qui partage le même référentiel. La généralisation proposée par la relativité d'échelle est particulièrement naturelle lorsque l'on s'attache à décrire l'évolution de l'idée de relativité en fonction des propriétés du concept le plus fondamental de la physique : l'espace-temps.
Dans la relativité « galiléenne », l'espace-temps est
Il est alors possible de voir le travail d'Einstein comme la tentative de se soustraire de l'hypothèse de l'espace-temps euclidien ; les raisons qui l'ont amené là sont diverses, mais peuvent néanmoins se ramener à ça. Dans la relativité générale, l'espace-temps n'est pas supposé euclidien partout. En d'autres termes, l'espace-temps euclidien est un cas particulier (conforme à notre expérience ordinaire, certes, mais un cas particulier quand même) d'un espace plus général qui, lui, est courbe (et plus précisément riemannien). Et c'est précisément le but de la physique fondamentale que d'essayer de s'affranchir des conditions particulières pour atteindre les lois de la nature les plus générales.
Si l'on regarde l'équation d'Einstein aujourd'hui (cette équation représente en fait 16 équations différentielles du deuxième ordre couplées), on trouve des dérivées secondes. Implicitement, les coordonnées d'espace-temps sont donc considérées comme au moins deux fois différentiables.
En fait, Nottale n'est pas le premier à supposer les coordonnées d'espace-temps comme non différentiables: il suffit d'interpréter les équations dans le cadre des distributions.
Alors, toute la force de la relativité d'échelle résiderait précisément ici : elle consisterait à supprimer encore une hypothèse sur l'espace-temps, celle de la différentiabilité. L'espace-temps resterait continu. Cependant, il ne serait plus seulement courbe, mais aussi non différentiable, autrement dit fractal (conséquence du théorème de Lebesgue). C'est la force majeure de cette théorie face aux autres théories du tout : elle fait la seule hypothèse d'en supprimer une justement, et ce sur l'objet le plus fondamental de la physique : l'espace-temps. La relativité d'échelle est supposée englober donc par définition la relativité générale, puisqu'elle est supposée en être une généralisation. Ainsi, l'espace-temps courbe (riemannien) deviendrait lui aussi un cas particulier d'un espace-temps encore plus général.
Pour aller plus loin, il serait possible d'imaginer un espace-temps discontinu, mais il semble que ce ne soit pas (ou pas encore ?) utile pour comprendre les problèmes physiques auxquels nous sommes confrontés.
Un problème théorique que la relativité restreinte d'Einstein essayait de résoudre était l'apparition d'une constante, , dans les équations de Maxwell décrivant la propagation des ondes électromagnétiques, dont la lumière. Le problème posé par cette constante ayant la dimension d'une vitesse est qu'elle semblait indépendante de la vitesse de l'observateur, et par conséquent n'obéissait pas à la loi additive de composition des vitesses v = v1 + v2.
De la même façon, l'équation de Schrödinger fait apparaître une constante à partir de laquelle on peut dériver une distance fondamentale, la longueur de Planck , qui apparaît indépendante de la résolution à laquelle on l'observe, contrairement aux autres quantitiés assimilables à des longueurs.
Tout comme l'existence d'une vitesse absolue c requiert l'écriture d'une loi de composition de vitesses qui laisse cette vitesse invariante (la Transformation_de_Lorentz), l'existence d'une longueur apparemment absolue suggère qu'il est nécessaire d'écrire les changements d'échelle d'une façon qui préserve cette longueur. La relativité d'échelle est principalement l'étude des conséquences d'une telle transformation.
En relativité générale, la composition des vitesses ne se réduit pas à une simple addition. Par exemple, vue d'une gare, la vitesse d'une balle dans un train n'est pas la somme de la vitesse du train et de la vitesse de la balle vue du train. Le calcul correct fait intervenir une composition des vitesses un peu plus compliquée mais calculable par la transformation de Lorentz, qui introduit une vitesse limite (celle de la lumière), pour laquelle v « + » c = c.
Avec la relativité d'échelle, la même chose se produit avec la composition des niveaux de « zoom », qui ne se réduit pas à une simple addition (en échelle logarithmique). Autrement dit : si on passe d'une mesure d'un objet en centimètres à une mesure en millimètres par une multiplication par 10 (1 ordre de grandeur), et de la même mesure en millimètres à une mesure en micromètres par une multiplication par 1000 (3 ordres de grandeur), on ne passe pas de la mesure en centimètres à celle en micromètres par une multiplication par 10x1000 = 10 000 (1+3 = 4 ordres de grandeur). En supposant que la transformation de Lorentz se généralise à la composition des échelles, Nottale a annoncé que cela impliquerait naturellement des tailles limites.
Dans cette théorie, toutes ces limites sont aussi solides que le "mur de la vitesse de la lumière", vouloir parler d'un objet "au-delà" n'a pas plus de sens que parler d'un objet « plus rapide que c ». Notamment, regarder plus "tôt" dans le temps que le mur de Planck n'a pas non plus la moindre signification : le « Big Bang » est inaccessible.
Il est bien sûr possible de tenter un "zoom" supplémentaire, mais cela conduit à voir exactement la même chose (exactement comme se mettre dans un train encore plus rapide ne change pas la vitesse de la lumière observée).
"Assez loin" des échelles limites, on resterait dans le domaine « non-relativiste d'échelle », où les lois classiques de composition des échelles s'appliquent : si un objet en mm est 10 fois plus gros que le même en cm, et si l'objet est 100 fois plus gros en cm qu'en mètres, alors il est, à une approximation impossible à prendre en défaut, 1000 fois plus gros en mm qu'en mètres. Selon le cas, c'est la mécanique quantique ou la relativité générale qui s'applique. Par contre, ces deux théories doivent devenir de plus en plus fausses au fur et à mesure qu'on se rapproche des échelles limites, les écarts prévisibles sont calculables, et c'est un point qui permettra de valider (ou au contraire infirmer) la théorie de la relativité d'échelle.
En effet, une des conséquences les plus étonnantes de cette théorie est qu’il existe des trajectoires qui varient indéfiniment suivant les changements d’échelles (il n’existe donc aucune échelle où ces trajectoires peuvent se ramener à une droite, comme c’est le cas en physique classique, autrement dit ces trajectoires sont des fractales). Ce résultat a deux conséquences importantes :
Le plus remarquable, c'est que l'application des lois de la relativité d'échelle implique la quantification.
La mécanique quantique n'est ainsi pas abolie, elle apparaît comme un simple cas particulier.
Cependant, la relativité d'échelle implique que la mécanique quantique "standard" devient fausse aux très hautes énergies (supérieure à 100 GeV), car elle ne prend pas en compte les effets relativistes d'échelles qui deviennent sensible à ce niveau. En fait, la relativité d'échelle dans sa forme actuelle ne tient pas compte des modifications à faire dans le cas des hautes énergies. Par exemple, elle établit une correspondance entre les lois de Newton et l'équation de Schrödinger, mais en ce qui concerne les équations macroscopiques de la relativité restreinte et les équations de la mécanique quantique tenant compte des effets relativistes, Laurent Nottale y travaille encore.
À ce titre, on peut contester l'expression "généraliser la relativité générale" puisque la théorie n'est même pas encore accordée avec la relativité restreinte !