Sphéroïde de Clairaut - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Sphéroïde de Clairaut

Alexis Clairaut (1713–1765), élu membre de l'Académie Royale des Sciences de Paris à seize ans. C'est à lui qu'on doit l'ouvrage capital sur la figure de la Terre. Dans ce livre, paru en 1743, Clairaut (on écrivait aussi Clairaux et Clairault) posa les fondations de l'hydrostatique moderne, dont la formulation actuelle fut donnée par Leonhard Euler (1707–1783) quelques années plus tard.

Dans son célèbre ouvrage « Théorie de la Figure de la Terre, Tirée des Principes de l'Hydrostatique » publié en 1743, Alexis Claude Clairaut (1713–1765) fit une synthèse des rapports existant entre la pesanteur et la forme de la Terre. Membre de la mission en Laponie, ce mathématicien hors-pair avait aussi une solide expérience de terrain. Dans le préambule de son livre, il examine la théorie des tourbillons de Descartes pour conclure qu'elle ne convient pas au problème, qui selon lui doit être traité dans l'esprit de la théorie de Newton en tenant compte des lois de l'hydrostatique établies par Pascal et d'autres. Il écrit en particulier : «… Les lois de l'hydrostatique ne pourraient-elles pas permettre que cette masse d'eau eût une forme irrégulière, qu'elle fût aplatie par un pôle, allongée de l'autre et que les méridiens ne fussent pas semblables ? En ce cas les opérations faites en Laponie, en France et au Pérou ne pourraient nous donner la vraie figure de la Terre. On sait par les premiers principes de cette science qu'un fluide ne saurait être en repos à moins que la surface ne soit de niveau c'est-à-dire perpendiculaire à la ligne à plomb, parce qu'alors chaque goutte n'a plus de pente à couler d'un côté que de l'autre. De là il suit que si la force avec laquelle tous les corps tombent étant toujours dirigée vers un même centre, la Terre devrait être parfaitement ronde… mais si au contraire la pesanteur suit une ligne qui ne passe pas par le centre, la Terre ne sera plus sphérique, mais elle aura la forme nécessaire pour qu'en chacun des points de la surface elle soit coupée perpendiculairement par la direction de la pesanteur en ce point. Toute la question de la forme de la Terre est donc fondée sur la loi selon laquelle la force de pesanteur agit… ».

La théorie de la forme hydrostatique fut formulée par Clairaut au milieu du XVIIIe siècle, puis étendue dans les décennies et siècles suivants par d'éminents savants comme Legendre, Laplace, Roche, Lyapunov et Poincaré, et d'autres à peine moins distingués. En fait, le problème de la forme de la Terre a constitué l'un des problèmes majeurs de la science du XIXe siècle siècle. Il fut à l'origine de très importants progrès en mathématiques et en mécanique, ainsi qu'en astronomie et en géodésie, et il est toujours à l'ordre du jour.

Sphéroïde de Maclaurin

Colin Maclaurin (1698–1746). Portrait réalisé par le 11e Comte de Buchan, d'après un portrait plus ancien peint par James Ferguson.

En 1728, l'année de la découverte de l'aberration de la lumière par Bradley, Newton montre, à partir de sa loi de la gravitation, qu'une montagne doit avoir une action sur le fil à plomb, et il en calcule la valeur dans un cas particulier en supposant que la densité moyenne de la Terre est de l'ordre de 5 à 6 fois celle de l'eau. Ce calcul incitera Bouguer à faire des observations au fil à plomb lors de la mission au Pérou, dans le but de déterminer la densité moyenne, et donc la masse, de la Terre. En 1742, le savant écossais Colin Maclaurin, lauréat de l'Académie Royale des Sciences de Paris en 1740 pour un essai sur les marées, démontre qu'un ellipsoïde de révolution aplati peut être une figure d'équilibre pour une masse fluide pesante homogène en rotation. On démontrera plus tard que ce sphéroïde de Maclaurin, aux propriétés géométriques bien définies en fonction de la densité et de la vitesse de rotation, est la seule figure d'équilibre stable sous les hypothèses données, lorsque le rapport de la force centrifuge à l'équateur à la force de gravité ne dépasse pas un seuil critique. Ce problème est aussi étudié à la même époque par Thomas Simpson (1710–1761), un mathématicien qui a aussi laissé une formule très utilisée pour effectuer des quadratures numériques.

Page générée en 0.225 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales | Partenaire: HD-Numérique
Version anglaise | Version allemande | Version espagnole | Version portugaise