À température ambiante, les verres métalliques présentent des contraintes à rupture très élevées (jusqu’à plus de 2 GPa pour les verres base Zr) associées à des déformations élastiques particulièrement importantes (plus de 3 %). Macroscopiquement, ils montrent un comportement fragile (rupture sans déformation plastique préalable) mais on relève la présence de bandes de cisaillement, caractéristiques d’une activité plastique locale : ainsi, ce mode de déformation est appelé mode hétérogène.
À haute température (T > 0,8Tg) le matériau peut suivre un mode homogène de déformation, pour lequel les bandes de cisaillement disparaissent totalement, et tout le matériau participe à la déformation. Le verre peut subir dans ce mode là des déformations allant jusqu’à plus de 10 000 % en traction.
Comme dans le cas du verre de silice, l'alliage fondu, refroidi jusqu'à l'état solide ne sera amorphe que si la température de fusion Tf est passée suffisamment vite pour que les atomes constitutifs de l'alliage n'aient pas le temps de s'organiser selon une structure cristalline. C'est-à-dire qu'il faut refroidir le liquide à une vitesse supérieure à une vitesse critique Rc telle que les températures inférieures à Tf sont atteintes sans que le liquide se soit solidifié.
Cela se traduit par la continuité de la variation d'une grandeur thermodynamique comme le volume occupé par cette phase (en maintenant la pression constante) ou d'une des fonctions thermodynamiques énergétiques molaires, comme l'enthalpie H, par exemple, sans changement de pente au point Tf. Une cristallisation aurait conduit à une discontinuité pour ces grandeurs, et à un changement de leur pente sur un diagramme (V, T) ou (H, T).
Après le passage de Tf, la matière est dans un état métastable appelé liquide surfondu ; elle est toujours liquide, mais sa viscosité augmente rapidement avec l'abaissement de sa température.
En continuant d'abaisser la température, le liquide se fige en un solide amorphe où les atomes ont une organisation désordonnée semblable à celle qu'ils avaient dans le liquide surfondu.
Le passage de liquide surfondu à solide amorphe se traduit sur un diagramme (V, T) ou (H, T) par une rupture de la pente de la courbe au point Tg (température de transition vitreuse), sans discontinuité du volume spécifique ou de l'enthalpie. Si, laissé à température constante, le liquide surfondu pourra cristalliser dans des durées observables, ce n'est plus le cas du solide amorphe.
Tout ceci fait la similarité entre verre métallique et verre de silice. La différence majeure entre ces deux types de matériaux du point de vue de leur obtention est la vitesse critique de trempe Rc qui dépend de la composition du liquide à refroidir. Si pour le verre de silice, Rc est suffisamment faible pour permettre de travailler et mettre en forme longuement la pâte de verre, les métaux ont une très forte propension à cristalliser et les premiers alliages amorphes obtenus pour le binaire Au80Si20 ont nécessité une hypertrempe à 106 K/s.
Cette différence de vitesse de trempe critique signifie que les procédés mis en œuvre et les pièces obtenues pour ces deux matériaux sont radicalement différents.
Pour une composition d'alliage donnée, la vitesse de trempe critique Rc est fixée ; elle varie d'un alliage à l'autre. Pour de nombreuses composition, aucune méthode actuelle ne permet d'obtenir un solide amorphe à partir de l'état fondu. Cependant, des règles empiriques ont été énoncées par Akihisa Inoue qui donnent des critères à vérifier pour une meilleure capacité à former un solide amorphe (glass-forming ability en anglais). Ces règles disent que :
Ces règles sont le fruit d'observations expérimentales de tendances et sont cependant à considérer avec précaution : en effet, un faible changement de composition de l'alliage, n'altérant pas le respect des règles d'Inoue peut changer la capacité à former des solides amorphes de manière importante.
La capacité à former un solide amorphe peut être évaluée par exemple par l'amplitude du domaine de température de la zone de liquide surfondu. Lorsqu'elle augmente, la vitesse de trempe critique Rc diminue, ce qui permet de fabriquer un solide amorphe avec une trempe moins rapide, dans des conditions moins sévères et avec une plus forte épaisseur. Étant donné que les techniques de trempe sont difficiles à améliorer et que la vitesse de trempe est toujours limitée par la diffusion de la chaleur dans l'échantillon lui-même, l'exploration, parfois systématique, des compositions d'alliages à la recherche de grandes capacités à former des solides amorphes est un domaine de recherche très actif.
Une fois l'alliage élaboré, la méthode de trempe conditionne grandement la forme finale des objets produits : le liquide se solidifie durant la trempe et l'usinage de ces matériaux fragile est difficile. Cependant, le matériau amorphe une fois solidifié, s'il a une large zone de liquide surfondu, peut être chauffé jusqu'à ces températures et présente alors des propriétés plastiques intéressantes pour la mise en forme.
La trempe sur roue est une méthode utilisée depuis les débuts des alliages métalliques amorphes. Elle permet d'obtenir des vitesses de trempe très élevées par contact avec un tambour de métal refroidi, et en produisant des échantillons minces (d'épaisseur environ 10 μm). On obtient ainsi une hypertrempe (106 K/s). On peut produire ainsi de manière industrielle des rubans longs qui, éventuellement recuits et enroulés, trouvent une application comme noyau ferromagnétique pour des transformateurs.
Il s'agit simplement d'injecter ou de laisser couler le métal liquide dans un moule en métal bon conducteur de chaleur refroidi, par exemple par un circuit de refroidissement à eau. Ceci permet de produire des échantillons de verre métallique massif, pourvu que la dimension de l'échantillon voulu soit en accord avec la composition de l'alliage employé.
Étant donnée la difficulté d'usiner des morceaux de verre métallique en raison de leur grande fragilité, la forme du moule sera celle de l'échantillon final. Les formes employées sont généralement des barreaux ou des plaques.
Le liquide peut aussi être lâché dans un réservoir de liquide froid, comme de l'eau froide. On obtient alors des billes de solide amorphe.