Alternateur d'Alexanderson - Définition

Source: Wikipédia sous licence CC-BY-SA 3.0.
La liste des auteurs de cet article est disponible ici.

Performances

Un gros alternateur d'Alexanderson peut atteindre une puissance de sortie HF de 200 kW et nécessite un refroidissement à eau ou à huile. Ce type d'appareil possède 600 paires d'électrodes sur les enroulements du stator et doit tourner à 2 170 tours par minute pour une fréquence de sortie de 21,7 kHz. Pour obtenir des fréquences plus élevées, la vitesse de rotation du rotor pourra être amenée jusqu'à 20 000 tours par minute.

Contrairement à l'émetteur à étincelles et à l'émetteur à arcs de Valdemar Poulsen également utilisés à cette époque, l'alternateur d'Alexanderson génère une onde continue de grande pureté.
Avec un émetteur à étincelles, l'énergie électromagnétique s'étale sur de larges bandes latérales et transmet en réalité sur plusieurs fréquences à la fois. Avec un émetteur à onde continue comme l'alternateur d'Alexanderson l'énergie est concentrée sur une seule fréquence et augmente d'autant l'efficacité de l'émission.

La fréquence d'émission est directement liée à la vitesse du rotor ce qui a conduit à utiliser un régulateur de vitesse automatique pour obtenir une fréquence d'émission stable. Ce système de régulation doit compenser les variations de vitesse du rotor dues aux différences de charge de l'alternateur au moment de la manipulation télégraphique.

Principe de fonctionnement

L'alternateur d'Alexanderson est basé sur la réluctance variable (un peu comme un capteur de guitare électrique) qui fait varier le champ magnétique reliant deux bobines. L'alternateur possède un stator circulaire en fer feuilleté qui supporte deux séries de bobines disposées en croissant. La première série de bobines est alimentée en courant continu et produit un champ magnétique dans l'espace vide du stator. La seconde série produit une tension alternative aux fréquences radio. Le rotor est un disque en fer feuilleté avec des trous ou des fentes autour de sa circonférence. Ces ouvertures sont remplies d'un matériau non–magnétique pour diminuer la traînée aérodynamique. Le rotor ne possède aucun bobinage ou connexion électrique.

Quand le rotor tourne, soit c'est une partie en fer du disque qui se trouve dans l'espace inter–électrodes et un fort champ magnétique parcourt l'espace, soit c'est une partie non–magnétique et le champ magnétique est beaucoup plus faible. Ces changements de flux génèrent une tension dans la deuxième série de bobines du stator.

Les bobines HF du final sont toutes reliées entre elles par un transformateur de sortie dont l'enroulement du secondaire est lui-même connecté au circuit de l'antenne. La modulation de la voix en radiotéléphonie, ou la radiotélégraphie, sont produites par un amplificateur magnétique qui est également employé pour la modulation d'amplitude.

La fréquence de l'émission radioélectrique d'un alternateur d'Alexanderson exprimée en Hertz est le produit du nombre de paires d'électrodes du stator par la vitesse de rotation du rotor en tours par seconde. Par conséquent, si on veut augmenter la fréquence d'émission, il faut, soit augmenter le nombre de paires d'électrodes du stator, soit la vitesse de rotation du rotor, soit les deux.

Inconvénients

En raison des très hautes vitesses de rotation d'un alternateur d'Alexanderson par rapport à un alternateur conventionnel, il faut un entretien permanent assuré par du personnel qualifié. Il est indispensable de prévoir un refroidissement efficace à eau ou à huile et une excellente lubrification ce qui est difficile avec les lubrifiants de l'époque. En effet, les premières éditions du Admiralty Handbook of Wireless Telegraphy de la Marine britannique (manuel de télégraphie sans fil du ministère de la Marine) décrit ce problème avec beaucoup de précision, sans doute pour justifier le choix de la Royal Navy d'avoir rejeté cette technologie. En revanche l'US Navy l'utilise largement.

On peut aussi noter que chaque changement de fréquence est une opération longue et compliquée. De plus, contrairement à l'émetteur à étincelles, on ne peut pas couper la porteuse comme on le souhaite ce qui exclut, par exemple, de pouvoir « écouter entre les signaux » (c'est–à–dire de stopper la transmission entre chaque signal pour écouter s'il y a une réponse). Il y a aussi le risque de faire repérer le bâtiment par un navire ennemi.

À cause de la limite du nombre d'électrodes et de la vitesse de rotation de la machine, l'alternateur d'Alexanderson est, au mieux, capable d'émettre dans le bas de la bande des ondes moyennes ; l'émission en ondes courtes ou en micro-ondes est physiquement impossible.

Page générée en 0.078 seconde(s) - site hébergé chez Contabo
Ce site fait l'objet d'une déclaration à la CNIL sous le numéro de dossier 1037632
A propos - Informations légales
Version anglaise | Version allemande | Version espagnole | Version portugaise