Ensemble des bicoupoles | |
---|---|
![]() | |
Sommets | 4n |
Arêtes | 8n |
Faces | 2n triangles, 2n carrés 2 n-gones |
Groupe de symétrie | Ortho : Dnh |
Groupe de symétrie | Gyro : Dnd |
Polyèdre dual | ? |
Propriétés | convexe |
En géométrie, une bicoupole est un solide formé en connectant deux coupoles par leurs bases.
Il existe deux classes de bicoupole parce que chaque moitié de coupole est bordée par une alternance de triangles et de carrés. Si les faces identiques sont placées ensemble, le résultat est une orthobicoupole; si les faces sont différentes, c'est une gyrobicoupole.
Les coupoles et les bicoupoles existent en tant qu'ensembles infinis de polyèdres, comme les pyramides, les bipyramides, les prismes, les antiprismes et les trapèzoèdres.
Six bicoupoles ont des faces polygonales régulières : les orthobicoupoles hexagonales, octogonales et décagonales, ainsi que les gyrobicoupoles hexagonales, octogonales et décagonales La gyrobicoupole hexagonale est un solide d'Archimède, le cuboctaèdre; les cinq autres sont des solides de Johnson.
Les bicoupoles d'ordres plus élevés peuvent être construites si les faces de flanc sont autorisées à s'étirer en rectangles et en triangles isocèles.
Les bicoupoles sont spéciales pour avoir quatre faces sur chaque sommet. Ceci signifie que leurs polyèdres duaux auront tous des faces quadrilatèrales. Le meilleur exemple connu est le dodécaèdre rhombique composé de 12 faces rhombiques. Le dual de la forme ortho, l'orthobicoupole hexagonale, est aussi un dodécaèdre, similaire au dodécaèdre rhombique, mais il possède 6 faces trapèzoïdales dont les arêtes courtes et longues alternent autour de la circonférence.
Ensemble des orthobicoupoles :
Ensemble de gyrobicoupoles :
Solides géométriques | ||||
Les polyèdres | ||||
Les solides de Platon | ||||
Tétraèdre régulier - Cube - Octaèdre régulier - Icosaèdre régulier - Dodécaèdre régulier | ||||
Les solides d'Archimède | ||||
Tétraèdre tronqué - Cube tronqué - Octaèdre tronqué - Dodécaèdre tronqué - Icosaèdre tronqué - Cuboctaèdre - Cube adouci - Icosidodécaèdre - Dodécaèdre adouci - Petit rhombicuboctaèdre - Grand rhombicuboctaèdre - Petit rhombicosidodécaèdre - Grand rhombicosidodécaèdre | ||||
Les solides de Kepler-Poinsot | ||||
Petit dodécaèdre étoilé - Grand dodécaèdre étoilé - Grand dodécaèdre - Grand icosaèdre | ||||
Les solides de Catalan | ||||
Triakioctaèdre - Tétrakihexaèdre - Triakitétraèdre - Pentakidodécaèdre - Triaki-icosaèdre - Dodécaèdre rhombique - Icositétraèdre pentagonal - Triacontaèdre rhombique - Hexacontaèdre pentagonal - Icositétraèdre trapézoïdal - Hexakioctaèdre - Hexacontaèdre trapézoïdal - Hexaki icosaèdre | ||||
Les solides de Johnson | ||||
Les solides de révolution | ||||
Boule - Cylindre de révolution - Cône de révolution - Tore - Paraboloïde de révolution |