Mécanique quantique | ||||||||||||||
| ||||||||||||||
Postulats de la mécanique quantique Histoire de la mécanique quantique
| ||||||||||||||
En physique, la dualité onde-particule ou dualité onde-corpuscule est un principe selon lequel tous les objets de l'univers microscopique présentent simultanément des propriétés d'ondes et de particules. Ce concept fait partie des fondements de la mécanique quantique.
Cette dualité tente de rendre compte de l'inadéquation des concepts conventionnels de « particules » ou d'« ondes », pris isolément, à décrire le comportement des objets quantiques. L'idée de la dualité prend ses racines dans un débat remontant aussi loin que le XVIIe siècle, quand s'affrontaient les théories concurrentes de Christiaan Huygens qui considérait que la lumière était composée d'ondes et celle de Isaac Newton qui considérait la lumière comme un flot de particules. À la suite des travaux d'Albert Einstein, Louis de Broglie et bien d'autres, les théories scientifiques modernes accordent à tous les objets une nature d'onde et de particule, bien que ce phénomène ne soit perceptible qu'à des échelles microscopiques.
Onde ou particule, c'est l'absence de représentation plus adéquate de la réalité des phénomènes qui nous oblige à adopter, selon le cas, un des deux modèles alors qu'ils semblent antinomiques (voir infra).
Un des grands problèmes de la physique quantique est de donner des images. En effet, l'être humain a besoin d'images pour réfléchir, pour retenir (voir l'article Psychologie cognitive).
On ne peut se construire des images que par analogie avec ce que l'on connaît, avec notre expérience quotidienne. Ainsi, lorsque l'on s'imagine une onde, il nous vient à l'esprit les vagues sur l'eau ; lorsque l'on s'imagine une particule, il nous vient à l'esprit une bille.
Le problème en physique quantique est que, pour se représenter les objets aux petites échelles ou aux échelles élevées d'énergie (particules élémentaires), il faut faire appel aux deux notions d'ondes et de particules solides, alors qu'elles sont opposées et incompatibles :
Particule | Onde | |
---|---|---|
position ou interaction | localisée, d'extension définie | délocalisée, d'extension infinie dans le temps et l'espace |
propagation | trajectoire continue, avec une vitesse définie et observable | diffusion en même temps dans toutes les directions (son "moment" virtuel n'est pas directement observable) |
dénombrabilité et séparabilité | l'objet est dénombrable, et séparable en objets distincts. | l'objet est indénombrable et inséparable en objets distincts. |
Ceci cause un grand trouble, une incompréhension, et entraîne fréquemment un blocage, notamment lorsque l'on se pose la question : « si une particule est bien localisée hors interaction comment se fait-il qu'elle ne le soit pas lors d'une interaction ? »
La métaphore du cylindre est l'exemple d'un objet ayant des propriétés apparemment inconciliables. Il serait à première vue incongru d'affirmer qu'un objet a à la fois les propriétés d'un cercle et d'un rectangle : sur un plan, un objet est soit un cercle, soit un rectangle.
Mais si l'on considère un cylindre : une projection dans l'axe du cylindre donne un cercle, et une projection perpendiculairement à cet axe donne un rectangle.
On a donc bien un objet ayant les propriétés de l'un et de l'autre (mais il n'est ni l'un, ni l'autre). « Onde » et « particule » sont des manières de voir les choses et non pas les choses en elles-mêmes.
Notons par ailleurs que dans la description mathématique de la physique quantique, le résultat de la mesure est similaire à une projection géométrique (notion d'observable : l'état de l'objet est décrit par des nombres que l'on peut voir comme des coordonnées dans une base vectorielle, et en géométrie euclidienne, les coordonnées sont la projection de l'objet sur les axes de référence).
C’est l’absence d’équivalent macroscopique sur quoi nous pourrions nous référer qui nous force à penser les objets quantiques comme possédant des attributs contradictoires. Il serait inexact de dire que la lumière (comme tout autre système quantique d’ailleurs) est à la fois une onde et une particule, ce n’est ni l’un, ni l’autre. Le manque d'un vocabulaire adéquat et l'impossibilité de se faire une représentation mentale intuitive des phénomènes à petite échelle nous font voir ces objets comme ayant une nature, par elle-même, antinomique.
Pour lever cet apparent paradoxe et insister sur l'imperfection de nos concepts classiques d'onde et de corpuscule, les physiciens Jean-Marc Lévy-Leblond et Françoise Balibar ont proposé d'utiliser le terme de « quanton » pour parler d'un objet quantique. Un quanton n'est ni une onde, ni un corpuscule, mais peut présenter les deux aspects selon le principe de complémentarité de Bohr.